


Complex Analysis

Second edition

This new edition of a classic textbook develops complex analysis from the established
theory of real analysis by emphasising the differences that arise as a result of the richer
geometry of the complex plane. Key features of the authors’ approach are to use simple
topological ideas to translate visual intuition into rigorous proof, and, in this edition, to
address the conceptual conflicts between pure and applied approaches head-on.
Beyond the material of the clarified and corrected original edition, there are three

new chapters: Chapter 15 on infinitesimals in real and complex analysis; Chapter 16 on
homology versions of Cauchy’s Theorem and Cauchy’s Residue Theorem, linking back
to geometric intuition; and Chapter 17 outlines some more advanced directions in which
complex analysis has developed, and continues to evolve into the future.
With numerous worked examples and exercises, clear and direct proofs, and a view

to the future of the subject, this is an invaluable companion for any modern complex
analysis course.

Ian Stewart, FRS is Emeritus Professor of Mathematics at the University of Warwick. He
is author or coauthor of over 190 research papers and is the bestselling author of over
120 books, from research monographs and textbooks to popular science and science fic-
tion. His awards include the Royal Society’s Faraday Medal, the IMA Gold Medal,
the AAAS Public Understanding of Science Award, the LMS/IMA Zeeman Medal,
the Lewis Thomas Prize, and the Euler Book Prize. He is an honorary wizard of the
Discworld’s Unseen University.

David Tall is Emeritus Professor of Mathematical Thinking at the University of War-
wick and is known internationally for his contributions to mathematics education. He is
author or coauthor of over 200 papers and 40 books and educational computer software,
covering all levels from early childhood to research mathematics.



Complex Analysis
(The Hitch Hiker’s Guide to the Plane)

Second edition

IAN STEWART

DAVID TALL

University of Warwick



University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108436793
DOI: 10.1017/9781108505468

First edition c± Cambridge University Press 1983
Second edition c± JOAT Enterprises and David Tall 2018

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1983
Thirteenth reprint 2004
Second edition 2018

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall 2018

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Stewart, Ian, 1945– author. | Tall, David Orme, author.
Title: Complex analysis : the hitch hiker’s guide to the plane / Ian Stewart
(University of Warwick), David Tall (University of Warwick).

Other titles: Hitch hiker’s guide to the plane
Description: Second edition. | Cambridge : Cambridge University Press, 2018.
| Includes bibliographical references and index.

Identifiers: LCCN 2018007009 | ISBN 9781108436793 (alk. paper)
Subjects: LCSH: Functions of complex variables. | Numbers, Complex. |
Geometry, Analytic–Plane.

Classification: LCC QA331 .S85 2018 | DDC 515/.9–dc23
LC record available at https://lccn.loc.gov/2018007009

ISBN 978-1-108-43679-3 Paperback

Additional resources for this publication at www.cambridge.org/Stewart&Tall2ed

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.



Contents

Preface to the Second Edition page xi

Preface to the First Edition xiv

0 The Origins of Complex Analysis, and Its Challenge to Intuition 1

0.1 The Origins of Complex Numbers 1

0.2 The Origins of Complex Analysis 5

0.3 The Puzzle 6

0.4 Is Mathematics Discovered or Invented? 7

0.5 Overview of the Book 10

1 Algebra of the Complex Plane 13

1.1 Construction of the Complex Numbers 13

1.2 The x+ iyNotation 15

1.3 A Geometric Interpretation 16

1.4 Real and Imaginary Parts 17

1.5 The Modulus 17

1.6 The Complex Conjugate 18

1.7 Polar Coordinates 19

1.8 The Complex Numbers Cannot be Ordered 20

1.9 Exercises 21

2 Topology of the Complex Plane 24

2.1 Open and Closed Sets 26

2.2 Limits of Functions 27

2.3 Continuity 30

2.4 Paths 35

2.4.1 Standard Paths 35

2.4.2 Visualising Paths 37

2.4.3 The Image of a Path 37

2.5 Change of Parameter 38

2.5.1 Preserving Direction 39

2.6 Subpaths and Sums of Paths 39

2.7 The Paving Lemma 43



vi Contents

2.8 Connectedness 46

2.9 Space-filling Curves 52

2.10 Exercises 55

3 Power Series 59

3.1 Sequences 59

3.2 Series 63

3.3 Power Series 66

3.4 Manipulating Power Series 69

3.5 Products of Series 71

3.6 Exercises 72

4 Differentiation 75

4.1 Basic Results 75

4.2 The Cauchy–Riemann Equations 78

4.3 Connected Sets and Differentiability 82

4.4 Hybrid Functions 83

4.5 Power Series 84

4.6 A Glimpse Into the Future 87

4.6.1 Real Functions Differentiable Only Finitely Many Times 87

4.6.2 Bad Behaviour of Real Taylor Series 88

4.6.3 The Blancmange function 89

4.6.4 Complex Analysis is Better Behaved 91

4.7 Exercises 92

5 The Exponential Function 96

5.1 The Exponential Function 96

5.2 Real Exponentials and Logarithms 98

5.3 Trigonometric Functions 99

5.4 An Analytic Definition of π 100

5.5 The Behaviour of Real Trigonometric Functions 101

5.6 Dynamic Explanation of Euler’s Formula 103

5.7 Complex Exponential and Trigonometric Functions are Periodic 104

5.8 Other Trigonometric Functions 105

5.9 Hyperbolic Functions 106

5.10 Exercises 107

6 Integration 111

6.1 The Real Case 112

6.2 Complex Integration Along a Smooth Path 113

6.3 The Length of a Path 117

6.3.1 Integral Formula for the Length of Smooth Paths and Contours 119

6.4 If You Took the Short Cut . . . 122

6.5 Further Properties of Lengths 122



Contents vii

6.5.1 Lengths of More General Paths 123

6.6 Regular Paths and Curves 124

6.6.1 Parametrisation by Arc Length 126

6.7 Regular and Singular Points 127

6.8 Contour Integration 130

6.8.1 Definition of Contour Integral 131

6.9 The Fundamental Theorem of Contour Integration 133

6.10 An Integral that Depends on the Path 136

6.11 The Gamma Function 137

6.11.1 Known Properties of the Gamma Function 139

6.12 The Estimation Lemma 140

6.13 Consequences of the Fundamental Theorem 143

6.14 Exercises 146

7 Angles, Logarithms, and the Winding Number 149

7.1 Radian Measure of Angles 150

7.2 The Argument of a Complex Number 151

7.3 The Complex Logarithm 153

7.4 The Winding Number 155

7.5 The Winding Number as an Integral 159

7.6 The Winding Number Round an Arbitrary Point 159

7.7 Components of the Complement of a Path 160

7.8 Computing the Winding Number by Eye 161

7.9 Exercises 164

8 Cauchy’s Theorem 169

8.1 The Cauchy Theorem for a Triangle 171

8.2 Existence of an Antiderivative in a Star Domain 173

8.3 An Example – the Logarithm 175

8.4 Local Existence of an Antiderivative 176

8.5 Cauchy’s Theorem 177

8.6 Applications of Cauchy’s Theorem 180

8.6.1 Cuts and Jordan Contours 181

8.7 Simply Connected Domains 183

8.8 Exercises 184

9 Homotopy Versions of Cauchy’s Theorem 187

9.1 Informal Description of Homotopy 187

9.2 Integration Along Arbitrary Paths 189

9.3 The Cauchy Theorem for a Boundary 191

9.4 Formal Definition of Homotopy 195

9.5 Fixed End Point Homotopy 197

9.6 Closed Path Homotopy 198

9.7 Converse to Cauchy’s Theorem 201



viii Contents

9.8 The Cauchy Theorems Compared 202

9.9 Exercises 204

10 Taylor Series 207

10.1 Cauchy Integral Formula 208

10.2 Taylor Series 209

10.3 Morera’s Theorem 212

10.4 Cauchy’s Estimate 213

10.5 Zeros 214

10.6 Extension Functions 217

10.7 Local Maxima and Minima 219

10.8 The Maximum Modulus Theorem 220

10.9 Exercises 221

11 Laurent Series 225

11.1 Series Involving Negative Powers 225

11.2 Isolated Singularities 230

11.3 Behaviour Near an Isolated Singularity 232

11.4 The Extended Complex Plane, or Riemann Sphere 234

11.5 Behaviour of a Differentiable Function at Infinity 236

11.6 Meromorphic Functions 237

11.7 Exercises 239

12 Residues 243

12.1 Cauchy’s Residue Theorem 243

12.2 Calculating Residues 246

12.3 Evaluation of Definite Integrals 248

12.4 Summation of Series 258

12.5 Counting Zeros 261

12.6 Exercises 263

13 Conformal Transformations 268

13.1 Measurement of Angles 268

13.1.1 Real Numbers Modulo 2π 268

13.1.2 Geometry of R/2π 269

13.1.3 Operations on Angles 270

13.1.4 The Argument Modulo 2π 270

13.2 Conformal Transformations 271

13.3 Critical Points 276

13.4 Möbius Maps 278

13.4.1 Möbius Maps Preserve Circles 278

13.4.2 Classification of Möbius Maps 279

13.4.3 Extension of Möbius Maps to the Riemann Sphere 281

13.5 Potential Theory 281



Contents ix

13.5.1 Laplace’s Equation 281

13.5.2 Design of Aerofoils 283

13.6 Exercises 284

14 Analytic Continuation 289

14.1 The Limitations of Power Series 289

14.2 Comparing Power Series 291

14.3 Analytic Continuation 293

14.3.1 Direct Analytic Continuation 293

14.3.2 Indirect Analytic Continuation 295

14.3.3 Complete Analytic Functions 296

14.4 Multiform Functions 296

14.4.1 The Logarithm as a Multiform Function 297

14.4.2 Singularities 298

14.5 Riemann Surfaces 299

14.5.1 Riemann Surface for the Logarithm 299

14.5.2 Riemann Surface for the Square Root 300

14.5.3 Constructing a General Riemann Surface by Gluing 301

14.6 Complex Powers 302

14.7 Conformal Maps Using Multiform Functions 304

14.8 Contour Integration of Multiform Functions 305

14.9 Exercises 311

15 Infinitesimals in Real and Complex Analysis 315

15.1 Infinitesimals 316

15.2 The Relationship Between Real and Complex Analysis 318

15.2.1 Critical Points 320

15.3 Interpreting Power Series Tending to Zero as Infinitesimals 322

15.4 Real Infinitesimals as Variable Points on a Number Line 323

15.5 Infinitesimals as Elements of an Ordered Field 324

15.6 Structure Theorem for any Ordered Extension Field of R 327

15.7 Visualising Infinitesimals as Points on a Number Line 328

15.8 Complex Infinitesimals 331

15.9 Non-standard Analysis and Hyperreals 333

15.10 Outline of the Construction of Hyperreal Numbers 336

15.11 Hypercomplex Numbers 337

15.12 The Evolution of Meaning in Real and Complex Analysis 341

15.12.1 A Brief History 341

15.12.2 Non-standard Analysis in Mathematics Education 342

15.12.3 Human Visual Senses 344

15.12.4 Computer Graphics 345

15.12.5 Summary 346

15.13 Exercises 346



x Contents

16 Homology Version of Cauchy’s Theorem 350

16.0.1 Outline of Chapter 351

16.0.2 Group-theoretic Interpretation 353

16.1 Chains 354

16.2 Cycles 356

16.2.1 Sums and Formal Sums of Paths 357

16.3 Boundaries 358

16.4 Homology 360

16.5 Proof of Cauchy’s Theorem, Homology Version 362

16.5.1 Grid of Rectangles 363

16.5.2 Proof of Theorem 16.2 365

16.5.3 Rerouting Segments 366

16.5.4 Resumption of Proof of Theorem 16.2 368

16.6 Cauchy’s Residue Theorem, Homology Version 368

16.7 Exercises 370

17 The Road Goes Ever On . . . 374

17.1 The Riemann Hypothesis 374

17.2 Modular Functions 377

17.3 Several Complex Variables 378

17.4 Complex Manifolds 379

17.5 Complex Dynamics 379

17.6 Epilogue 381

References 382

Index 383



Preface to the Second Edition

The first edition of Complex Analysis focused on generalising concepts from real analy-
sis to the complex case. Where there were differences, we looked at the geometric

picture to see why they were happening. This second edition does the same, but it also
focuses on the increasing sophistication of mathematical ideas as we build from intuition
to rigour, in a manner where greater understanding leads to more sophisticated intuitions
and ways of working. New concepts and methods often start out in a technical way, with
problematic aspects that conflict with intuition. As well as generalising real analysis, we
move beyond it by addressing these conceptual conflicts, resolving them, and providing
more sophisticated concepts and methods appropriate to complex analytic functions.
This approach is used throughout the book. So, for example, the text now includes a

short (but complete) discussion of the construction of a space-filling curve, to challenge
our intuition about continuity and to explain why we have had to be careful with topo-
logical assertions that appear obvious. The treatment here is simpler than most of the
literature on space-filling curves. We have spent some time examining different notions
of a path, especially the role of smoothness.

We have added three new chapters. Chapter 15 introduces ideas about infinitesimals

in real and complex analysis, thought of as variables that tend to zero, and formulated

as elements of extensions of the real and complex fields. Chapter 16 gives a formal link
from analysis back to geometric intuition, formulating and proving homology versions
of Cauchy’s Theorem and Cauchy’s Residue Theorem. Chapter 17 outlines a few of the
more advanced directions in which complex analysis has developed, and continues to
evolve into the future.
Chapter 15 has been added for the following reasons. Since the first edition appeared

in 1983, the ways in which we operate mathematically have changed dramatically. Not
only are there computers that perform numerical and symbolic operations at a speed
way beyond that previously available to the individual mind; there are also interactive
graphics drawn on high-resolution screens that let us visualise mathematical ideas in
completely new ways. In particular, we can dynamically magnify pictures to see tiny
detail that lets us represent ‘arbitrarily small’ quantities.
This second edition therefore includes an extra chapter to introduce formally defined

infinitesimals that lie in an ordered extension field K of the real numbers, which can
be manipulated algebraically and visualised formally on an extended number line. This
approach generalises to the complex case using the field K(i) where i2 = −1, which
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can be visualised in the extended complex plane. This construction offers a meaningful
bridge between the epsilon-delta rigour of pure mathematics and the intuitive use of
infinitesimals in applications.
It can easily be shown that any proper ordered field extension K of the reals must

contain infinitesimal elements x: that is, elements that are not zero yet satisfy |x| < r

for all positive real numbers r. Using the completeness of the real numbers, we prove a
simple theorem that any finite element of K has the form k = c+ h, where c is real and
h is infinitesimal or zero. A transformation in the form m(x) = (x − c)/ε, where ε is a
positive infinitesimal, then lets us magnify infinitesimal detail near c and see it with our
unaided human eyes in a real picture. This technique extends to the complex case in the
field K(i).

We can now illustrate why complex analysis is so different from real analysis. A
differentiable complex function defined on an open set is locally expressible as a power
series, and we may take K to be the smallest ordered extension field generated by a
single infinitesimal ε. The elements are power series

∑
r≥n a

rεr in ε with possibly a
finite number of terms in 1/ε, and each non-zero element has an order of infinitesimality
n related to the first non-zero coefficient an (where the element may be infinite if n
is negative). Meanwhile a differentiable real function may be differentiable once but
not twice, and this requires a much more sophisticated extension field K such as that
given by the logical theory of non-standard analysis. While Gottfried Leibniz imagined
infinitesimals of different orders, non-standard analysis fails to have this property and
requires a much more sophisticated construction. At the end of the chapter we compare
and contrast the various theories within a single framework.
Chapter 16 on homology complements Chapter 9 on homotopy versions of Cauchy’s

Theorem, and logically it could have been placed immediately after that. We postpone
it to the penultimate chapter because we do not wish to delay the more practical payoff
from Cauchy’s Theorem – Taylor and Laurent series, residues, evaluation of integrals,
summation of series, and so on.
Homology can be thought of as a way of characterising ‘holes’ in a topological space,

which here is the domain of a complex function f . Singularities, where f is not differ-
entiable, create such holes, and homology helps to describe the topological effect of
singularities; for example, in the homology version of Cauchy’s Residue Theorem. To
avoid including big chunks of algebraic topology, our approach to homology is based on
step paths in open subsets of the plane, one of the main simplifying tools in this book.
The proof is ‘bare hands’ and exploits the simple geometry of step paths and the abelian
group structure of homology.
Chapter 17 has been included to make it clear that complex analysis is still a major

area of mathematical research. Complete though the classical theory may seem to be,
there are numerous generalisations and new questions. The main topics mentioned are
the Riemann Hypothesis, modular functions, several complex variables, complex man-
ifolds, and complex dynamics – leading to the fractal geometry of Julia sets and the
famous Mandelbrot set.
In this new edition of Complex Analysis we have corrected all known typographical

errors, simplifed some proofs, and reorganised the material in mostly harmless ways to
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improve readability. We have brought the text and layout into line with current practice,
and redrawn all the figures. Proofs, definitions, and examples are terminated with the
‘end of proof’ symbol ±. The same symbol indicates the absence of a proof when the
result is clear or has already been proved. Contrary to the prevailing wisdom, we do
not insert punctuation marks at the end of displayed formulas. (Your tutors may object
to this. Tradition is on their side. If they do, they can set you an extra exercise: insert
all missing punctuation.) But it is now the twenty-first century. No one puts full stops
(US: periods) at the end of book titles, or chapter or section headings. So why do this in
displayed formulas, where it may cause confusion because punctuation marks are also
often part of the symbolism? We suggest that clean typography should override pedantic
punctuation.

Formulas in the main text are another matter; here the absence of punctuation can
cause confusion. We have followed tradition here.

Online Supplementary Material

Supplementary material including a concordance showing in more detail the changes
between the previous edition and this one, and links to GeoGebra, can be found on the
Cambridge University Press website: www.cambridge.org/Stewart&Tall2ed.



Preface to the First Edition

Students faced with a course on ‘Complex Analysis’ often find it to be just that –
complex. In the sense of ‘complicated’.

It’s true, of course, that the proofs of some of the major theorems in the subject can
demand a certain technical versatility. But in many ways, on a conceptual level, complex

analysis is actually easier than real analysis; it just isn’t always taught that way.
This book is intended for use at the level of second or third year undergraduates,

and it is based on experience accumulated from teaching such courses over the past
decade. To exhibit the inherent simplicity of complex analysis we have organised the
material around two basic principles: (1) generalise from the real case, and (2) when
that reveals new phenomena, use the rich geometry of the plane to understand them.

Our aim throughout is to encourage geometric thinking, with the proviso that it must be
adequately backed by analytic rigour.
The opening chapter sets the work in its historical context, and the history is often

alluded to later as partial motivation. However, we feel that cultural changes often affect
the status of conceptual problems: what was once an important difficulty can become

a triviality when viewed with hindsight. It is not always necessary to drag today’s stu-
dents through yesterday’s hang-ups. We argue the point at greater length below: it is
fundamental to our entire approach.



0 The Origins of Complex Analysis, and
Its Challenge to Intuition

In a lecture in 1886, Leopold Kronecker asserted that the integers are made by God and
all the rest is the work of Man (Gray [7]). If so, complex numbers are certainly one
of humanity’s most intriguing mathematical artefacts. For centuries they have been a
wonder to mathematicians and philosophers alike. It took nearly 300 years from their
first appearance in Girolamo Cardano’s Ars Magna (The Great Art) to the publication
of a formal definition that satisfies modern standards of rigour. Building on such foun-
dations, the initiated reader might be forgiven for thinking that complex analysis must
be an incredibly complicated theory. Yet here we come to a historical puzzle. Although
it took nearly three centuries to obtain a satisfactory treatment of complex numbers, it
then took less than a tenth of that time to complete a major part of complex analysis,

which is far more sophisticated and extensive.
Obviously the numbers must come first, or there is nothing to do analysis with, but

the timescale is surprising. A possible explanation is that setting up the foundations
adequately involved deep problems of a philosophical nature: it took a long time to come
to grips with them, but once the ‘breakthrough’ had occurred, the further development
was easy by comparison.
History suggests otherwise.

0.1 The Origins of Complex Numbers

Cardano’s celebrated Ars Magna of 1545 is one of the most important early alge-
bra texts. Diophantus’s Arithmetica of about 250 discussed the solution of equations
and introduced a rudimentary form of algebraic notation. Muhammad al-Khwarizmi’s
Al-kitab al-mukhtasar fi hisab al-gabr wa’l-muqabala (The Compendious Book on Cal-
culation by Completion and Balancing) appeared around 820. Its translation into Latin
as Liber Algebrae et Almucabola gave us the word ‘algebra’. Al-Khwarizmi’s discussion
was verbal, with no symbols but occasional diagrams.
Cardano introduced a systematic algebraic notation, very different from what we use

today. He used this to present the newly discovered solutions of cubic and quartic equa-
tions. His book contained the solution of cubics discovered by Scipione del Ferro around
1500, and independently by Niccolo Fontana (nicknamed ‘Tartaglia’, the stammerer)
around 1535. The high point of the text is the solution of quartic equations found by
Cardano’s student Lodovico Ferrari. The tangled tale of alleged duplicity and public
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controversy that accompanied these discoveries can be found in Stewart [19, 20] and
other historical sources.
Ars Magna also discussed the simultaneous equations

x+ y = 10

xy= 40

and obtained a solution (in modern notation) of the form

x = 5+
√
−15 y = 5−

√
−15

Cardano gave no interpretation for the square root of a negative number, but he did
observe that, on the assumption that the quantities obey the usual algebraic rules, we
can check that they satisfy the equations. His attitude to the discovery was dismissive:

‘So progresses arithmetic subtlety, the end of which . . . is as refined as it is useless.’
In the same book he observed that applying Tartaglia’s formula to the cubic equation

x3 = 15x+ 4 (0.1)

leads to the solution

x = 3

±
2+

√
−121+ 3

±
2−

√
−121

in contrast to the obvious answer x = 4.

In both instances there was a conflict between the intuition about numbers that math-

ematicians had built up over the years, and the formal behaviour of the symbolic

manipulations that Cardano was carrying out. It took centuries for mathematicians to
extend the number concept and develop a refined intuition in which Cardano’s obser-
vations make sense. The first step happened not long after, however. Raphael Bombelli

(1526–73) suggested a way to reconcile the two solutions of (0.1) by manipulating the
‘impossible’ roots as if they are ordinary numbers. Since

(2±
√
−1)3 = 2±

√
−121

Cardano’s expression becomes

x = (2+
√
−1) + (2−

√
−1) = 4

and the ‘impossible’ root is just the familiar root in a complex disguise. Bombelli’s work
was the first hint that complex numbers can prove useful in solving real mathematical

problems. But the message took a long time to sink in.
In La Géometrie (1637), René Descartes made the distinction between ‘real’ and

‘imaginary’ numbers, interpreting the occurrence of imaginaries as a sign that the prob-
lem concerned is insoluble, an opinion shared by Isaac Newton at a later date. However,
this view sits uneasily with Bombelli’s realisation that a formula involving complex

numbers sometimes leads to a real solution, suggesting that the issue is not that simple.

John Wallis [25] represented a complex number geometrically in his Algebra of 1685.
On a fixed line the real part of the number was measured off (in the direction given by
its sign); then the imaginary part was measured off at right angles, Figure 1. But this
idea was largely forgotten.
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Figure 1 Wallis’s geometric representation of a complex number.

In 1702 John Bernoulli was evaluating integrals of the form
²

dx

ax2 + bx+ c

by partial fractions. Using the philosophy that complex numbers can be manipulated

like real ones, he wrote the integrand as

1

ax2 + bx + c
=

A

x− α
+

B

x− β

(using modern notation) where α,β are the roots of the quadratic denominator, and
obtained the integral in the form

A log(x− α) + B log(x − β)

His bold decision to use the same method when the quadratic had no real solutions led to
logarithms of complex numbers. But what were they? Both Bernoulli and Leibniz used
the method, and by 1712 they were engaged in controversy. Leibniz asserted that the
logarithm of a negative number is complex, while Bernoulli insisted it is real. Bernoulli
argued that, since

d(−x)

−x
=

dx

x

it follows by integration that log(−x) = log(x). Leibniz, on the other hand, insisted
that the integration was correct only for positive x. Once again, formal calculations that
seemed sensible were in conflict with intuition.
Leonhard Euler resolved the controversy in favour of Leibniz in 1749, pointing out

that integration requires an arbitrary constant

log(−x) = log(x)+ c

a point that Bernoulli had ignored. By formally manipulating expressions involving
complex numbers, Euler derived a host of theoretical relations, including the famous

formula of 1748:

e
iθ
= cos θ + i sin θ (0.2)

Putting θ = π we find

eiπ = −1 (0.3)
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a fantastic relation that blends the three mathematical symbols e, i, and π in one
surprising equation. The formula (0.3) is widely referred to as Euler’s formula, although
he never published it explicitly. He did publish (0.2), of which it is a simple corollary,
and this is also known as Euler’s formula. However, a formula equivalent to (0.2) had
been found earlier by Roger Cotes in 1714.
Extending the theory of logarithms to the complex case by defining

log z = w if and only if ew = z

we obtain other intriguing results. Formal manipulation gives

e
log z+mπ i

= e
log z

(e
π i
)
m
= z · (−1)

m

For an even integer m = 2n this gives

elog z+2nπ i = z

So log z + 2nπ i is also a logarithm of z: the complex logarithm is many-valued. For an
odd integer m = 2n+ 1 we have

elog z+(2n+1)π i = −z

whence

log(−z) = log z+ (2n+ 1)π i

This resolves the Leibniz–Bernoulli controversy: if x is real and positive, then log(−x)
must be complex.
As mathematicians refined their intuition to encompass complex numbers, everything

started to fit together and make sense. The theory of complex numbers grew ever more
fascinating. What was lacking was an interpretation that explained precisely what these
entities are – a formal counterpart to the newly extended intuitions.
In 1797 Caspar Wessel published a paper in Danish describing the representation of a

complex number as a point in the plane. It went almost totally unnoticed until a French
translation was published a hundred years later. Meanwhile the idea was attributed to
Jean-Robert Argand, who wrote it up independently in 1806. Since that time the geo-
metric interpretation of complex numbers has commonly become known as the Argand
diagram.

Another pioneer of the theory of complex numbers was Carl Friedrich Gauss. In his
doctoral dissertation of 1799 he addressed a problem that had concerned mathemati-
cians since the early eighteenth century. Initially it had been widely believed that, just
as the solutions of real quadratic equations could lead to new ‘complex’ numbers, so
would solutions of equations with complex coefficients lead to even more kinds of new
numbers. But Jean d’Alembert (1717–83) conjectured that complex numbers alone suf-
fice. Gauss confirmed this in the ‘fundamental theorem of algebra’ – every polynomial
equation has a complex root. At first he proved it in the purely real form that any real
polynomial factorises into linear and quadratic factors, avoiding explicit use of imag-
inaries; later he treated the general case. By 1811 he viewed the complex numbers as
points in the plane, saying so in a letter to Friedrich Bessel. In 1831 he published full
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details of his representation of complex numbers, which had begun to acquire an air of
respectability.

In 1837, nearly three centuries after Cardano’s use of ‘imaginary numbers’, William
Rowan Hamilton published the definition of complex numbers as ordered pairs of real
numbers subject to certain explicit rules of manipulation. (In the same year Gauss wrote
to Wolfgang Bolyai that he had developed the same idea in 1831.) At last this placed the
complex numbers on a firm algebraic basis.

0.2 The Origins of Complex Analysis

Unlike the gradual emergence of the complex number concept, the development of
complex analysis seems to have been the direct result of the mathematician’s urge
to generalise. It was sought deliberately, by analogy with real analysis. However, the
mathematicians of the period tended to assume that everything in real analysis must
automatically be meaningful in the complex case, so the main question must be how
‘the’ complex version behaves. That there might not be a complex version, or several
alternatives, was seldom appreciated, as the controversy over log(−x) illustrates.
As noted above, there are early traces of analytic operations on complex functions in

the work of Bernoulli, Leibniz, Euler, and their contemporaries.
In his 1811 letter to Bessel, Gauss shows that he knew the basic theorem on com-

plex integration around which complex analysis was subsequently built. In real analysis,
when we integrate a function f between limits a and b, to get

² b

a

f (x)dx

the limits fully specify the integral. But in the complex case, where a and b represent
points in the plane, it is also necessary to specify a definite path from a to b, and to
‘integrate along the path’. The question is: to what extent does the value of the integral
depend on the chosen path?
Gauss says:

I affirm now that the integral
³
f (x)dx has only one value even if taken over different paths,

provided f (x) . . . does not become infinite in the space enclosed by the two paths. This is a very
beautiful theorem whose proof . . . I shall give on a convenient occasion.

It seems the occasion never arose. The crucial step of publishing a proof of this result
was taken in 1825 by the man who was to occupy centre stage during the first flowering
of complex analysis: Augustin-Louis Cauchy. After him, this result is called ‘Cauchy’s
Theorem’. In Cauchy’s hands the basic ideas of complex analysis rapidly emerged. For a
complex function to be differentiable, it must have a very specialised nature: its real and
imaginary parts must satisfy certain properties called the Cauchy–Riemann Equations.
He showed that contour integrals of differentiable functions have the property noted
privately by Gauss. Further, if an integral is computed along a path that winds round
points where the function becomes infinite, Cauchy showed how to compute this integral
using the ‘theory of residues’. The latter requires no more than the calculation of a
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constant, called the ‘residue’ of the function, at each exceptional point, and knowing
how many times the paths winds around that point. The precise route of the path does
not matter at all – only how it winds round these exceptional points.
Power series turned out to be important in the theory, and other workers extended

these ideas. Pierre-Alphonse Laurent introduced ‘Laurent series’ involving negative
powers in 1843. In this formulation, near an exceptional point z0, a differentiable
function is expressed as a sum of two series

f (x) = [a0 + a1(z− z0)+ · · · + an(z − z0)
n
+ · · · ]

+[b1(z− z0)
−1
+ · · · + an(z− z0)

−n
+ · · · ]

The residue of f (z) at z = z0 is then just the coefficient b1 . Using the theory of residues,
the computation of complex integrals often proved to be far simpler than could ever have
been dreamed.

Cauchy’s definition of analytic ideas such as continuity, limits, derivatives, and so on,
were not the same as those we use today. He based them on infinitesimal notions, which
fell into disrepute in the late nineteenth century – though recent developments in ‘non-
standard analysis’, and a new theory we present in Chapter 15, show that we may have
been over-hasty in judging Cauchy’s ideas. Moreover, Cauchy’s concept of ‘infinitesi-
mal’ was a variable quantity that approaches zero as closely as we please, not a fixed
quantity. See Tall and Katz [24] for detailed discussion and educational implications.

A rigorous treatment was devised by Karl Weierstrass (1815–97) using definitions
which are still regarded as fundamental, the ‘epsilon-delta’ formulation. Weierstrass

founded his whole approach on power series. However, the geometric viewpoint was
sorely lacking in his work (at least as published). This deficiency was remedied by far-
reaching ideas introduced by Bernhard Riemann (1826–66). In particular, the concept of
a ‘Riemann surface’, which dates from 1851, treats many-valued functions by splitting
the complex plane into multiple layers, on each of which the function is single-valued.
The crucial feature is how the layers join up topologically.
From the mid-nineteenth century onwards, the progress of complex analysis has

been strong and steady, with many far-reaching developments. The fundamental ideas
of Cauchy remain, now refined and clothed in more recent topological language. The
abstruse invention of complex numbers, once described by our mathematical forebears
as ‘impossible’ and ‘useless’, has become part of an aesthetically satisfying theory with
eminently practical applications in aerodynamics, fluid mechanics, electronics, control
theory, and many other areas.
Since the first edition of this book, formal theory has also evolved so that Cauchy’s

ideas of infinitesimals can be visualised as points on an extended number line, which we
describe in our new Chapter 15.

0.3 The Puzzle

We return to our historical puzzle. Why was the development of complex numbers so
laboured and hesitant, whereas that of complex analysis was explosive? We suggest
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a possible answer (only personal opinion and thus open to dispute). It is somewhat
different from the ‘foundations + breakthrough’ explanation offered earlier.
Looking at the early history of complex numbers, the overall impression is of count-

less generations of mathematicians beating out their brains against a brick wall in search
of – what? A triviality. The definition of complex numbers as ordered pairs of points
(x, y), or as points in the plane, was obtained over and over and over again. It is even
implicit in Bombelli’s work; it is there for all to see in Wallis’s; it crops up again by way
of Wessel, Argand, and Gauss. Morris Kline remarks on page 629 of [11]:

That many men – Cotes, de Moivre, Euler, and Vandermonde – really thought of complex
numbers as points in the plane follows from the fact that all, in attempting to solve xn − 1 = 0,
thought of solutions . . . as the vertices of a regular polygon.

If the problem has such a simple solution, why was this not recognised sooner?
Perhaps the early mathematicians were not so much seeking a construction for com-

plex numbers as a meaning, in the philosophical sense: ‘what are complex numbers?’
However, the development of complex analysis showed that the complex number con-
cept was so useful that no mathematician in his right mind could possibly ignore it. The
unspoken question became ‘what can we do with complex numbers?’, and once that
had been given a satisfactory answer, the original philosophical question evaporated.
There was no jubilation at Hamilton’s incisive answer to the 300-year old foundational
problem – it was ‘old hat’. Once mathematicians had woven the notion of complex
numbers into a powerful coherent theory, the fears that they had concerning the exis-
tence of complex numbers became unimportant, because mathematicians lost interest in
that issue.
There are other cases of this nature in the history of mathematics, but perhaps none is

more clear-cut. As time passes, the cultural world-view changes. What one generation
sees as a problem or a solution is not interpreted in the same way by a later generation.
It is worth bearing this in mind when thinking about the historical development of math-
ematics. To interpret history solely from the viewpoint of the current generation may
easily lead to distortion and misinterpretation.
What this explanation omits is any discussion of why mathematicians lost interest in

the meaning of complex numbers. And that leads to a question that sheds a different
light on the historical development, which we now discuss.

0.4 Is Mathematics Discovered or Invented?

Students trying to understand new concepts are in a similar position to the pioneers who
first investigated them. At any stage in our education, we build not just on our current
knowledge, but on a variety of beliefs and intuitions that are often vague, and may not be
consciously recognised. As a trivial example, children familiar with counting numbers
may find it hard to adapt their thinking to negative numbers, or rational numbers. When
faced with questions like ‘what is 3 minus 7?’ or ‘what is 3 divided by 7’, intuition
based solely on whole numbers leads to the answer ‘can’t be done’. That makes it hard



8 The Origins of Complex Analysis, and Its Challenge to Intuition

to understand−4 or 3/7. In fact, these is not really trivial examples, because the world’s
top mathematicians, centuries ago, were just as confused by the question ‘what is the
square root of minus one?’ Even their terminology – ‘imaginary’ – reveals how puzzled
they were. Intuitively they considered numbers to be ‘real’ – not in the sense we now
use to distinguish real from complex, but as direct representations of real measurements.
The new objects behaved like numbers in many ways, but they seemed not to correspond
directly to reality.
In such circumstances, it can be tempting to discard existing intuition completely.

But it is more sensible to adapt the intuition to fit the new circumstances. It is much
easier to do arithmetic with negative numbers or fractions if you remember how to do
it with whole numbers; it is much easier to do algebra with complex numbers if you
bear in mind how to do it with real numbers. So the trick is to sort out which aspects
of existing intuition remain valid, and which need to be refined into a broader kind of
understanding.

One way to approach this issue is to take seriously a question that is often asked but
seldom answered satisfactorily: is mathematics discovered or invented? One answer is
to dismiss the question, and agree that neither word is entirely appropriate; moreover,
they are not mutually exclusive. Most discoveries have elements of invention, most
inventions have elements of discovery. Galileo would not have discovered the moons
of Jupiter without the invention of the telescope. The telescope could not have been
invented without discovering that sand could be melted to make glass.
But leaving such quibbles aside, we can make a rough distinction between discov-

ery, which is finding something that is already there but has not hitherto been noticed,
and invention, which is a creative act that brings into being something that has not pre-
viously existed. There is a case to be made that in this sense, mathematicians invent
new concepts but then discover their properties. For example, complex integration is all
about ‘paths’ in the complex plane. Intuitively, a path is a line drawn by moving the
hand so that the pencil remains in contact with the paper – no jumps. We might choose
to formalise this notion as a continuous curve – the image of a continuous map from a
real interval to the complex plane. We might be interested in how the pencil point moves
along this curve, which requires the map itself, not just its image. Sometimes we might
wish the path to be smooth – to have a well-defined tangent.
As it happens, we need all of these notions. Intuitively, they are all based on the

same mental image. Formally, they are all very different. They have different definitions,
different meanings, and different properties. A smooth path always has a meaningful
length, for instance; a continuous path may not. The definitions we settle on in this book
fit conveniently into the standard ideas of analysis, but they are not built into the fabric
of the universe. We chose them, and by so doing we invent concepts such as ‘path’,
‘curve’, and ‘smooth’.
On the other hand, once a concept has been invented, we cannot invent its properties.

When we also invent the concept ‘length’, we discover that every smooth path has finite
length. We cannot ‘invent’ a theorem that the length of a smooth path can be infinite. If
we weaken ‘smooth’ to ‘continuous’, however, we can discover that infinite lengths are
possible; indeed, ‘length’ need not have a sensible meaning at all. In short: invention
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opens up new mathematical territory, but exploring it leads to discoveries. We may not
know what things are present in the territory, but we do not get to choose them.

Sometimes – in fact, very often – we discover that our inventions have features that
we neither expected nor intended them to have. We discover, perhaps to our dismay, that
the image of a smooth path can have a right-angled corner, see Section 6.7. We did not
expect that: a corner does not feel ‘smooth’. But its possibility is a direct consequence
of the definition we invented.
When this kind of thing happens, we have two choices. Accept the surprises as the

price for having a nice, tidy definition; or rule them out by changing the definition –
inventing a more comfortable alternative. In practice we often do both, by giving the
alternative a different name. Here we could (and do) define a ‘regular path’ to be a
smooth path γ : [a, b] → C for which γ ²(t) ³= 0 whenever t ∈ [a, b]. Now the image

cannot have a sharp corner. On the other hand, every theorem about regular paths must

now take account of the consequences of that extra condition. We also have to remember

that some theorems may be valid for regular paths but not for smooth paths, and so on.
As we move from intuitive ideas to formal ones, we also refine our intuition so that

it matches the formal theory better. Formal calculations start to make sense, not just
as strings of symbols that follow from previous strings, but as meaningful statements

that agree with our new intuitions. From this point of view, the history of complex

analysis is the story of intuition co-evolving with an increasingly formal approach. This
suggests that mathematicians lost interest in the meaning of complex numbers when
they incorporated them into their intuitive assumptions and beliefs. With the apparent
conflicts resolved by these refined intuitions, they were free to push the subject forward,
no longer worried that it did not make logical sense.
When a mathematical area ‘settles down’ into a mature theory, there is a broad con-

sensus that certain concepts provide the most convenient route through the material.

These concepts then become standard – things like ‘continuous’, ‘connected’, and so
on. They get taught in lecture courses and printed in books. We may start to feel that
the standard definitions are the only reasonable ones. Even so, we are always free to
work with different concepts if that seems sensible, or even to modify definitions while
retaining the same name – though that can be dangerous. Today’s concept of continuity
is quite different from what it was in the time of Euler, but we use the same word; we
just bear in mind that it now has a specific technical meaning. A historian reading Euler
would need to be on their guard.
It is also worth remarking that many mathematical concepts seem more natural to us

than others. Counting numbers are very natural (we even call them the ‘natural num-

bers’). The number i was baffling for centuries (and was called ‘imaginary’ as a result).
Our culture, our society, and even our senses, predispose us towards certain concepts.
Euclid’s points and lines correspond to early stages of the processing of images sent
from the retina to the visual cortex. Newton’s concept of acceleration being related to an
applied force reflects the way our ears sense accelerations and make us ‘feel’ a push –
a force.
It then becomes easy to imagine that mathematics somehow already exists in a realm

outside the natural world. Even if humans invented numbers, in retrospect they seem
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such a natural idea that surely they were just hanging around waiting to be invented.
If so, that is more like discovery. This view is often called Platonism: the idea that
mathematical concepts already exist in some ideal form in some kind of world outside
the physical universe, and mathematicians merely discover how these ideal forms work.
The contrary view is that mathematics is a shared human construct, but that construct is
by no means arbitrary, because every new invention is made in the context of existing
knowledge, and every new discovery must be logically valid.
A major theme of this book is that many apparently puzzling aspects of complex

analysis can be made more intuitive by paying attention to the geometry of the complex

plane (in a broad sense, including its topology). This brings one of the human brain’s
most powerful abilities, visual intuition, into play. For this reason, we draw a lot of pic-
tures. However, a picture, and our visual intuition, can be misleading unless we examine

the unstated assumptions that they involve. By doing so, we can refine out intuition and
make it more reliable. For this reason, we do not just introduce important definitions and
then deduce theorems that refer to them. We try to relate those definitions to intuition,
to make the proofs easier to understand. Then we exhibit some of the positive results
that arise, to convince you that the new concept is worth considering. And then . . . we
show you that sometimes the formally defined concept does not behave the way intuition
might suggest. Sometimes it turns out to be useful to strengthen the definition so that
it matches intuition more closely. Sometimes we refine our intuition so that it matches

the formal definition. Sometimes we can even do both, in which case we have to make

some careful but useful distinctions.
The historical events sketched earlier in this chapter offer many examples of this

process. The square root of minus one went from being a puzzling idea that seemed to
have no meaning to one of the most important concepts in the whole of mathematics.

Along the way, mathematicians’ intuition for ‘number’ underwent a revolution. We can
now to some extent short-circuit the historical debates – what were hang-ups then need
not be hang-ups now – but when a new idea puzzles us, and doesn’t seem to make sense
until we finally sort it out, it is helpful to remember that the mathematical pioneers often
experienced exactly the same feelings, for much the same reasons.

0.5 Overview of the Book

It is often useful to set the development of a mathematical theory in its historical con-
text, but it is not always necessary to fight the historical battles again. In this text we give
honour where we can to those pioneers who carved their way through uncharted math-

ematical territory. But more recent developments let us see the theory itself in a new
light. To the modern ear the very name ‘complex analysis’ carries misleading overtones:
it suggests complexity in the sense of complication. The older meaning, ‘composite’,

was perhaps appropriate when the ‘real part’ of a complex number had a quite different
status from that of the ‘imaginary part’. But nowadays a complex number is a perfectly
integrated whole. To think of complex analysis as if it were, so to speak, two copies of
real analysis, is to place undue emphasis on the algebra at the expense of the geometry,
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which in the long run has been far more influential. And in fact complex numbers are not
more complicated than reals: in some ways, they are simpler. For instance, polynomials

always have roots. Likewise, complex analysis is often simpler than real analysis: for
example, every differentiable function is differentiable as often as we please, and has a
power series expansion.
In preparing our approach to the subject we have adopted two basic organising

principles. The first is the direct generalisation of real analysis to the complex case.
Definitions, of limits, continuity, differentiation, and integration are natural extensions
of the corresponding real notions. Since nowadays any student taking a course in com-

plex analysis may be assumed to have made a study of the real counterpart, many battles
have already been won. We can refer students to their accumulated knowledge, paus-
ing only to phrase it appropriately. This saves time and energy, allowing us to proceed
straight to the heart of the subject, where the interesting differences occur. Invariably
this happens because the plane has a richer geometry than the line, and this leads to our
second major organising principle: geometric insight is valuable and should be culti-
vated. Of course this insight must be translated into sound formal arguments; this can
often be done using modern topological notions.
From these two principles, a straightforward approach to complex analysis emerges.

First, complex numbers are defined formally as ordered pairs of real numbers, giv-
ing them a geometric interpretation as points in the plane. The topology of complex

numbers is then a natural consequence of plane topology. In quick succession it is
possible to derive complex generalisations of the notions of continuity, limits, and
differentiation, with particular emphasis on power series, which play a central role
later. A study of the complex exponential function, defined by the usual power series,
reveals the intimate connection between this function and the trigonometric functions
(also considered as power series). After generalising the notion of integration, the
logarithm can be viewed either as the inverse function of the exponential, or as the
integral

log z =

²
dz

z

suitably interpreted. Either approach has to deal with the multivalued nature of the com-

plex logarithm. This arises because the complex exponential has period 2π i, so cannot
be one-one. Resolving these issues involves close links between geometric intuition and
formal analysis.
At this stage Cauchy’s Theorem is presented in various guises, and the use of inte-

gration leads to a proof that every differentiable function can be expressed as a power
series. More generally, Laurent series (using positive and negative powers) take care
of isolated points where functions become infinite, and lead to the powerful ‘theory
of residues’ for calculating complex integrals, summing series, and counting zeros of
equations in a given region of the complex plane.
Returning to geometric ideas, complex analysis has many practical applications.

Today it is widely used by physicists and engineers, in many different contexts. In partic-
ular, it has proved invaluable in two-dimensional potential theory. The geometric ideas
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of Riemann can be viewed in terms of modern topology, to give a global insight into
‘many-valued’ functions (such as the logarithm) and open up new areas of progress.
In this second edition of the book, we continue by presenting a formal set-theoretic

approach to infinitesimals that has evolved since the first edition was published 35 years
ago. It offers a new vision of complex analysis that includes both the analytic epsilon-
delta approach of Riemann and the infinitesimal ideas of Cauchy in a broader overall
theory.

Next, we revisit Cauchy’s Theorem in the context of homology theory. Homology is
a topological property of the domain of the function, and it detected the presence of
holes. These holes are obstacles that cause integrals of complex functions to depend on
the chosen path. Using step paths, we reformulate complex integration over ‘cycles’ in a
domain. These are formal integer combinations of closed loops, so they form an abelian
group. The subgroup of ‘boundaries’ has the property that the integral of any continuous
function over a boundary is zero. So the difference between cycles and boundaries con-
trols how integrals depend on the choice of path. The corresponding algebraic object is
the quotient group of the group of cycles modulo the subgroup of boundaries, and this is
the (first) homology group of the domain. It provides a formal algebraic interpretation of
how integrals depend on the choice of path. This chapter provides a gentle introduction
to homology in its simplest (old-fashioned) form, though even this approach requires
some mathematical sophistication. The topological ideas shed light on the general area
surrounding Cauchy’s Theorem.

Finally, to show that complex analysis is still alive and kicking in the modern era,
Chapter 17 provides a simplified overview of a few more recent developments. These
include the still-unsolved Riemann Hypothesis, modular functions, generalising com-

plex analysis to several variables (where strange new phenomena occur), to complex

manifolds (multidimensional ‘surfaces’ with a complex structure, generalising Riemann

surfaces), and the iteration of complex maps, or complex dynamics, which leads to
remarkable fractal structures such as Julia sets and the Mandelbrot set.



1 Algebra of the Complex Plane

‘The Divine Spirit found a sublime outlet in that wonder of analysis, that portent of the
ideal world, that amphibian between being and not-being, which we call the imaginary
root of negative unity.’ So said Leibniz in 1702 – though he may have let his eloquence
run away with him. The current view of

√
−1 is a little more prosaic, though the uses

made of it are at least as inspiring. The logical status of complex numbers, which caused
so much distress during the eighteenth century, is now seen to be very much on a par
with that of the ‘real’ numbers. What puzzled the ancients was the obvious artificiality
and abstraction of the complex number system, in contrast to the apparently natural and
concrete real number system. But the mathematician of today sees even real numbers as
possessing a similar artificiality and abstraction.
In this chapter we discuss the construction of a system of numbers that contains the

familiar real numbers and permits the solution of the equation x2 = −1. This system
is known as the complex numbers. Many readers will already know the contents of this
chapter: they should read it through rapidly to check such items as notation, and pass on
at once to the next.
There is a natural geometric representation of complex numbers as a plane, analogous

to that of the reals as a line. The extra freedom inherent in the plane gives the whole
subject a very geometric flavour, which it is our intention to keep to the fore in the
development of the theory.

1.1 Construction of the Complex Numbers

We begin with the definition that emerged from the insights of Wallis, Wessel, Argand,
Gauss, and Hamilton:

DEFIN IT ION 1.1. A complex number is an ordered pair (x, y) of real numbers. Addition
and multiplication of complex numbers are defined by:

(x1 , y1) + (x2, y2) = (x1 + x2 , y1 + y2) (1.1)

(x1, y1)(x2, y2) = (x1x2− y1y2, x1y2 + x2y1) (1.2)

For example,

(3, 5)(2, 7) = (3 · 2− 5 · 7, 3 · 7+ 5 · 2) = (−29, 31)
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This definition is the culmination of several centuries of struggle to understand complex

numbers, and it shows how elusive a simple idea can be. Before we see what these pairs
have to do with

√
−1, however, let us establish some of their properties.

THEOREM 1.2. The set of complex numbers, with the operations defined by (1.1, 1.2),
is a field. That is, the following axioms hold: if z1 = (x1, y1), z2 = (x2, y2), and z3 =
(x3, y3) are complex numbers, then

(a) Addition and multiplication are commutative:

z1 + z2 = z2 + z1

z1z2 = z2z1
(1.3)

(b) Addition and multiplication are associative:

(z1 + z2) + z3 = z1 + (z2 + z3)

(z1z2)z3 = z1(z2z3)
(1.4)

(c) There is an additive identity (0, 0):

z1 + (0, 0) = z1 (1.5)

(d) There is a multiplicative identity (1, 0):

z1(1, 0)= z1 (1.6)

(e) Each element has an additive inverse:

(x, y) + (−x,−y) = (0, 0) (1.7)

(f) Each element other than (0, 0) has a multiplicative inverse:

(x, y)

±
x

x2 + y2
,
−y

x2 + y2

²
= (1, 0) (1.8)

(g) Multiplication distributes over addition:

z1(z2 + z3) = z1z2 + z1z3 (1.9)

Proof. All assertions (a)–(g) are direct consequences of (1.1) and (1.2), using only the
field properties of the set R of real numbers. For example, (1.9) holds because

z1(z2 + z3) = (x1 , y1)(x2 + x3 , y2 + y3)

= (x1(x2 + x3) − y1(y2 + y3), x1(y2 + y3)+ y1(x2 + x3))

= (x1x2 + x1x3 − y1y2 − y1y3 , x1y2 + x1y3+ y1x2 + y1x3)

and

z1z2 + z1z3 = (x1, y1)(x2, y2)+ (x1 , y1)(x3 , y3)

= (x1x2 − y1y2 , x1y2 + y1x2)+ (x1x3 − y1y3, x1y3 + y1x3)

= (x1x2 − y1y2 + x1x3 − y1y3, x1y2 + y1x2 + x1y3 + y1x3)

which, by real algebra, is the same ordered pair.
The reader should supply similar proofs for the remaining assertions.

The symbol C is used for the field of complex numbers.
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1.2 The x + iy Notation

The symbol commonly used for a complex number is not (x, y) but x+ iy. This notation
goes back to Euler, who used i to denote

√
−1 in 1777, though the notation was first

used consistently by Gauss.
To recover this notation, we proceed as follows. First note that since

(x1 , 0)+ (x2 , 0) = (x1 + x2, 0)
(x1, 0)(x2 , 0) = (x1x2 , 0)

we may identify a complex number (x1 , 0) with the real number x1 . More pedantically
the map (x1, 0) ±→ x1 defines an isomorphism between the set of complex numbers of
the form (x1, 0) and the field R of real numbers. Now define

i = (0, 1)

Then

x + iy = (x, 0)+ (0, 1)(y, 0)
= (x, y) by (1.1) and (1.2)

Finally, observe that

i2 = (0, 1)(0, 1)
= (0 · 0− 1 · 1, 0 · 1+ 1 · 0)
= (−1, 0)
= −1

In this sense, we may say that i =
√
−1.

The x+ iy notation is more convenient, and will be used from now on. (Sometimes
we use x + yi instead. By (1.3) this represents the same number. In particular, we use
this form when x, y are specific real numbers, because 1+ 2i looks more sensible than
1+ i2.)
Algebraic computations in this notation are easy. They use all the normal algebraic

rules, plus the rule i2 = −1. So to multiply, we work out

(x1 + iy1)(x2 + iy2) = x1x2 + x1iy2 + iy1x2 + iy1iy2
= x1x2 + i(x1y2+ y1x2) + i2y1y2

But i2 = −1, so this becomes

x1x2 − y1y2 + i(x1y2 + y1x2)

This computation, of course, explains the choice of the multiplication formula (1.2).
The addition formula (1.1) comes the same way but is easier. The definition by (1.1)
and (1.2) is thus a very sneaky piece of hindsight.
The formula (1.8) for inverses may also be derived as follows:

1

x+ iy
= 1

x+ iy
x − iy
x − iy

= x− iy
x2+ y2
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Example 1.3. Express 2+ 3i
1+ 2i

in the form x+ iy.

We have
2+ 3i

1+ 2i
=
2+ 3i

1+ 2i

1− 2i

1− 2i
=
2+ 6+ i(−4+ 3)

5
= −

8

5
−
i

5

1.3 A Geometric Interpretation

Since ordered pairs (x, y) provide coordinates in the plane R2, we can visualise C as a
plane, with the number x+ iy corresponding to the point (x, y) as in Figure 1.1.
The identification of (x, 0) with x ∈ R then amounts to considering the real numbers

as forming the real axis in the plane, as in Figure 1.2.
The y-axis, at right angles to this, is the imaginary axis.
This geometric representation is often called the Argand diagram or the Gauss plane.

Since so many other mathematicians (especially Wessel) have justifiable claims to it, we
avoid the danger of giving undue credit to any of them by referring to it as the complex
plane. In purely geometric terms, of course, it is just the real plane R2 , but interpreted
as C it has the additional algebraic structure of a field, not just a vector space over R. It
is this extra structure that gives the complex plane its special qualities.

Figure 1.1 Visualising a complex number as a point in the planeR2 .

Figure 1.2 Identifying x+ 0i ∈ C with x ∈ R.
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1.4 Real and Imaginary Parts

Given a complex number z = x+ iy, we call x the real part of z and y the imaginary
part, using the notation

x = re(z)

y = im(z)

Both are real numbers: the coordinates of z in the complex plane.

1.5 The Modulus

The modulus, or absolute value, of a real number x is defined to be

|x| =
³

x if x ≥ 0

−x if x < 0

As it stands, there is no obvious generalisation to complex numbers, because (see
Section 1.8 below) there is no useful ordering on C. However, we can interpret |x| geo-
metrically as the distance from x to the origin of the real number line. This translates
directly to the complex plane, leading to the definition

|z| =
´
x2 + y2

for the modulus, or absolute value, of a complex number z = x+ iy. Here we mean the
positive square root: since x2 + y2 is always a positive real number, the formula defines
|z| as a real number.

THEOREM 1.4. The modulus has the following properties:

|z1 + z2| ≤ |z1| + |z2| (1.10)

|z1z2| = |z1||z2| (1.11)

||z1| − |z2|| ≤ |z1 − z2| (1.12)

Proof. Property (1.11) follows at once from the definitions. The triangle inequal-
ity (1.10) is a little harder to prove directly, although its geometric interpretation
(Figure 1.3) is the obvious fact that one side of a triangle is no longer than the sum
of the lengths of the other two sides.
To prove (1.10) note that, since both sides are positive, it is equivalent to

(|z1 + z2|)
2 ≤ (|z1| + |z2|)2

which takes the form

(x1 + x2)
2 + (y1 + y2)

2 ≤ |z1|2 + 2|z1||z2| + |z2|2

where z1 = x1 + iy1, z2 = x2 + iy2 . Simplifying, this holds if and only if

x1x2 + y1y2 ≤ |z1||z2|
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Figure 1.3 Geometry for the triangle inequality.

Since the right-hand side is positive, we may square again, and the desired inequality
follows from

(x1x2 + y1y2)
2
≤ |z1|2|z2|2

But

|z1|
2|z2|

2 − (x1x2+ y1y2)
2 = (x21 + y21)(x

2
2 + y22) − (x1x2 + y1y2)

2

= (x1y2 − x2y1)
2

which is positive.
Property (1.12) is a consequence of (1.10). This implies that

|z1− z2| + |z2| ≥ |z1|

so

|z1− z2| ≥ |z1| − |z2|

Swapping z1 and z2 we also have

|z1 − z2| = |z2 − z1| ≥ |z2| − |z1|

Combining the two inequalities yields

||z1| − |z2|| ≤ |z1 − z2|

1.6 The Complex Conjugate

If z = x+ iy, its complex conjugate is

z̄ = x− iy

Geometrically, this is obtained by reflecting z in the x-axis, Figure 1.4.
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Figure 1.4 Geometry for the complex conjugate.

The following properties are easy to verify directly:

z1 + z2 = z̄1 + z̄2 (1.13)

z1z2 = z̄1z̄2 (1.14)

re(z) = 1
2(z + z̄) (1.15)

im(z) = 1
2i
(z− z̄) (1.16)

|z|
2
= zz̄ (1.17)

z̄ ∈ R if and only if z = z̄ (1.18)

Properties (1.13, 1.14) have the important implication that the complex conjugate of
any polynomial expression in complex numbers z1 , z2 , . . . , zn can be obtained by writing
a bar over each individual coefficient or variable in the expression. This is easily proved
by induction. For example,

5z1z2 − z37 + 2iz1 = 5̄z̄1z̄2 − z̄37 + 2̄īz̄1
= 5z̄1z̄2 − z̄37 − 2iz̄1

since 5, 2 are real and i is imaginary, so 5̄ = 5, 2̄ = 2, ī = −i.

1.7 Polar Coordinates

The expression x+iy for a complex number is intimately related to Cartesian coordinates
(x, y) in the plane. It turns out often to be useful to work with polar coordinates (r, θ),
which we recall correspond to a point distance r from the origin making an angle θ
measured from the positive x-axis in an anticlockwise direction, Figure 1.5. Of course
we measure θ in radians. These coordinate systems are related as follows:

x = r cos θ

y = r sin θ
(1.19)
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Figure 1.5 Polar coordinates.

Therefore

r =

´
x2 + y2 = |z|

where z = x + iy.

Finding θ is slightly trickier because it is not unique. Any value of θ for which (1.19)
holds is called an argument of z. The article ‘an’ is used to reflect the lack of uniqueness:
if θ is an argument then so is θ + 2kπ for any integer k. With the understanding that θ
is unique only up to multiples of 2π , we may use the notation

θ = arg z

Often the choice of θ is rendered unique by imposing some convention: for example,

we may insist that θ is chosen in the interval [0, 2π), or in (−π ,π ]. The unique value of
θ in the interval (−π ,π ] is known as the principal value of the argument. (We follow
standard practice in taking this particular interval. Its main advantage is that θ then

behaves nicely near the positive real axis, where θ = 0. But this is a technical point that
only acquires importance much later. The non-uniqueness of θ is a phenomenon with
tremendous ramifications in the theory, as we shall see.)
With r, θ defined as above,

z = x+ iy = r(cos θ + i sin θ)

The expression cos θ + i sin θ is of considerable importance in complex analysis. In
Chapter 5 we relate it to the complex exponential function.

1.8 The Complex Numbers Cannot be Ordered

The real numbers may be given an ordering (the usual one, >) which has among its
properties the following:

If x ²= 0 then either x > 0 or − x > 0, but not both (1.20)

If x, y > 0 then x+ y > 0, xy > 0 (1.21)



1.9 Exercises 21

No such ordering can be defined on the complex numbers. Suppose for a contradiction
that one can. Since i ²= 0, (1.20) implies that either i > 0 or−i > 0. Then (1.21) implies

that either −1 = i · i > 0 or −1 = (−i) · (−i) > 0. At the same time, 1 = (−1)2 > 0.

But then both 1 and −1 are greater than 0, contrary to (1.20).
It is therefore not possible to use inequalities, analogous to those for reals, when

discussing complex numbers. Any inequality that occurs must involve only real

numbers, possibly related to the given complex numbers. For example, if z ∈ C then

z > 1

makes no sense, but either of

|z| > 1

or

re(z) > 1

is acceptable. (They do not mean the same thing!) As a convention, if we write a
statement such as

ε > 0

this will automatically imply that ε is assumed to be a real number.

1.9 Exercises

1. Check in full detail that the complex numbers C form a field under the operations
of addition and multiplication defined in (1.1, 1.2).

2. In Figure 1.6 the black dots represent three complex numbers u, v,w (as marked).

The circle is the unit circle |z| = 1. The open dots a, b, c, d, e, f ,g, h represent (in
some order) the numbers u+ v, u+ w, v+ w,u+ v + w, uv,uw, vw, uvw. Which is
which?

Figure 1.6 Data for Exercise 2.
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3. By writing z in the form z = a+ bi, find all solutions z of the following equations:
(i) z2 = −5+ 12i

(ii) z2 = 2+ i

(iii) (7+ 24i)z = 375

(iv) z2 − (3+ i)z+ (2+ 2i) = 0

(v) z2 − 3z+ 1+ i = 0

4. If λ is a positive real number, show that

{z ∈ C : |z| = λ|z− 1|}

is a circle, unless λ takes one particular value (which?)
5. Draw the set of points

{z ∈ C : re(z + 1) = |z− 1|}

by substituting z = x+ iy and computing the real equation relating x and y.

Now note that re(z+1) is the distance from z to the line y = −1, and |z−1| is the
distance between z and 1. Compare with the classical ‘focus-directrix’ definition of
a parabola: the locus of a point equidistant from a fixed line (here y = −1) and a
fixed point (here (x, y) = (1, 0)).

6. Draw the set of all z ∈ C satisfying the following conditions:
(i) re(z) > 2

(ii) 1 < im(z) < 2

(iii) 1 < im(z− i) < 2

(iv) |z| < 2

(v) |z| > 1

(vi) 1 < |z| < 2

(vii) |z− 1| < 1

(viii) |z− 1| < |z + 1|

7. Draw the set of all z ∈ C satisfying the following conditions:
(i) zz̄ = 1

(ii) z+ iz̄+ 1+ i = 0

(iii) z+ z̄+ 2 = 0

(iv) z+ z̄+ 2i = 0

8. Let r, s, θ ,φ be real. Let

z = r(cos θ + i sin θ)
w = s(cos φ + i sinφ)

Form the product zw and use the standard formulas for cos(θ + φ), sin(θ + φ) to
show that arg(zw) = arg(z) + arg(w) (for any values of arg on the right, and some

value of arg on the left).
By induction on n, derive De Moivre’s Theorem

(cos θ + i sin θ)n = cos nθ + i sin nθ

for all natural numbers n.
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Figure 1.7 Data for Exercise 10.

Specialise to the case n= 3 and recover the usual formulas for cos 3θ and sin 3θ
in terms of cosθ and sin θ .

9. Use De Moivre’s Theorem (Exercise 8) and the substitution z = r(cos θ + i sin θ) to
show that the equation z3 = 1 has three distinct complex roots. Find them.
Compute the square roots of 1 + i

√
3,
√
3− i, and 1 + i, and the cube roots of√

3+ i, 1 − i, i. Sketch these points in the complex plane.
10. In earlier textbooks, multiplication of complex numbers is often defined as follows.

Given two complex numbers z1 , z2 , represent them by points A and B in the complex
plane; and let O, U be the points z = 0, 1 respectively, Figure 1.7.
Draw triangle OBC similar to triangle OUA (where ∠BOC = ∠UOA, ∠OBC =

∠OUA). Then z1z2 is represented by the point C so constructed.
Using the fact that |z1z2| = |z1||z2|, and the result of Exercise 5, show that this

construction agrees with our definition (1.2).
11. Define a square root

√
z of a complex number z to be any complex number w such

that w2 = z. Prove that every non-zero complex number has exactly two square
roots, and give formulas for them in terms of re z and im z.

If a,b, c ∈ Cwith a ²= 0, show that the solutions of the quadratic equation

az
2 + bz+ c = 0

are precisely

z = −b³
√
b2 − 4ac
2a

12. Use De Moivre’s Theorem (Exercise 8) to compute cos 5θ and sin 5θ in terms of
cos θ and sin θ .

13. Prove that De Moivre’s Theorem remains true if n is a negative integer.
14. Define a kth root k

√
z to be any w such that wk = z. Use De Moivre’s Theorem to

find an expression for k
√
r(cos θ + i sin θ).
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In this chapter we collect together the basic topological ideas required for our study of
complex analysis. The list is not very demanding. Some items are needed to handle dif-
ferentiation neatly, and some are needed for integration. Differentiation is naturally set
against a background of limits and continuity, and these are best dealt with on open sets.
On the other hand, an interval from one complex number to another is computed along
a specified path between them. A set in which any two points can be joined by a path is
said to be path-connected. To be able to cope with both integration and differentiation
in the simplest possible manner later on, we restrict our complex functions to be those
defined on open path-connected sets. Such a set is called a domain.

When the set is open we often abbreviate ‘path-connected’ to ‘connected’. The term
‘connected’ is used in point-set topology with a specific technical meaning, but for
open sets in C it is equivalent to being path-connected. So this abbreviation does no
harm.

Domains can have exotic shapes and paths can wiggle around a great deal. To be
able to appeal to geometric intuition without our imagination having to work over-
time thinking about such complications, we use a carefully conceived technical device
called the Paving Lemma. We show in this lemma that a path in an open set (in par-
ticular, a domain) can be subdivided into a finite number of smaller pieces in such
a way that each piece is contained in a disc within the open set, thus ‘paving’ the
path with discs, see Figure 2.1. A disc is the interior of a circle, which is geomet-

rically very simple: for instance, any two points in it can be joined by a straight
line. Joining the end points of pieces of the original path in each disc paving it, we
obtain a new path made up of straight line segments, still lying in the open set and
joining the ends of the original path. We see, therefore, that given any path what-
soever between two points in an open set, no matter how much the path twists and
turns, there is an alternative path in the open set, between the same points, that is
made up of a finite number of straight line segments. We can even insist that the seg-
ments are parallel to the real or imaginary axis, giving a step path in the open set. To
do so, take a suitable step path inside each paving disc and join them together, see
Figure 2.2.
With techniques such as this we can use the Paving Lemma to illuminate complex

analysis, yielding fully rigorous proofs linked firmly to geometric intuition.
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Figure 2.1 A domain (shaded) and a path in the domain (solid curve). Circles show a finite set of
discs inside the domain, whose union contains the path.

Figure 2.2 Replacing the path in Figure 2.1 by a step path.
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2.1 Open and Closed Sets

DEFIN IT ION 2.1. For a complex number z0 and a positive real number ε, the
ε-neighbourhood of z0 is

Nε(z0) = {z ∈ C : |z− z0| < ε}

This is an open disc of radius ε.
Geometrically, Nε(z0) is the disc centre z0 of radius ε, Figure 2.3.
A subset S ⊆ C is said to be open if for every z0 ∈ S there is a real number ε such

that Nε(z0) ⊆ S. We emphasise that ε may depend on z0.

Example 2.2. The disc Nε(z0) is itself open, for if z1 ∈ Nε(z0) then |z1 − z0| < ε.
Choose δ > 0 such that δ < ε − |z1 − z0|. By the triangle inequality, Nδ (z1) ⊆ Nε(z0),

Figure 2.4.

DEFIN IT ION 2.3. The complement of a subset S ⊆ C is

C \ S = {z ∈ C : z /∈ S}

A subset S is closed if C \ S is open.

Figure 2.3 The ε-neighbourhood of a point z0 .

Figure 2.4 The ε-neighbourhood of z0 is open.
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There is another way to characterise closed sets, using the notion of a limit point of
a subset S. A complex number z0 is a limit point of S if every neighbourhood Nε(z0)

contains a point of S not equal to z0 . In this definition, z0 does not itself have to belong
to S, though it may do. The essential feature of a limit point of S is that it has points of
S arbitrarily close to it. In fact, each Nε(z0) must contain an infinite number of points of
S – for if some Nε(z0) contains only finitely many points z1, . . . , zn of S, distinct from
z0 , we can take ε1 to be the smallest of the distances |z0 − zr|. Then Nε1(z0) contains no
points of S, a contradiction.
An alternative characterisation of a closed set is:

PROPOSIT ION 2.4. A subset S ⊆ C is closed if and only if S contains all its limit
points.

Proof. Suppose S is closed and z0 is a limit point. If z0 ∈ C \ S, which is open, then
Nε (z0) ⊆ C \ S for some ε > 0, so Nε (z0) contains no point of S, contradicting z0 being

a limit point. Hence z0 ∈ S.

Conversely, suppose that S contains all its limit points. Then any z0 ∈ C \ S is not a
limit point of S, so there exists ε > 0 such that Nε(z0) contains no point of S. Therefore
Nε (z0) ⊆ C \ S, so C \ S is open, and S is closed.

Not every point of a closed set need be a limit point of that set. For instance, if

T = {z ∈ C : z = 0 or z = 1/n for a positive integer n}

then the only limit point of T is 0. Since this is in T , the set T is closed.
Points in S that are not limit points of S are said to be isolated points of S. All points

of T except 0 are isolated points of T.
In general, an isolated point z0 of S has a neighbourhood Nε(z0) that contains no points

of S other than z0 . For instance, in the set T , if ε = 1
n
− 1

n+1
then Nε (1/n) contains no

other points of T. On the other hand, it is clear from the definitions that every element

of an open set is a limit point of that set.
We will also need:

DEFIN IT ION 2.5. The closure of a subset S ⊆ C is the intersection of all closed subsets
that contain S. This is closed, and is the smallest closed subset containing S. It consists
of S together with all limit points of S.

2.2 Limits of Functions

The notion of a limit

lim
z→z0

f (z)

is analogous to the real case, and its properties follow by similar arguments.

DEFIN IT ION 2.6. If f : S→ C is an arbitrary complex function and z0 is a limit point
of S, then limz→z0 f (z) = l if, given any ε > 0, there exists δ > 0 such that

for all z ∈ S, 0 < |z− z0| < δ implies | f (z) − l| < ε (2.1)
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Two points should be made about this definition:
(a) The point z0 need not belong to S, so f (z0) need not be defined. Even if z0 ∈ S,

f (z0) may not equal l.
For example, if

f (z) =

±
0 (z ±= 0)

1 (z = 0)

then limz→0 f (z) = 0 ±= f (0)

(b) It is essential that z0 is a limit point of S, or else there would exist δ > 0 such that
{z : |z− z0| < δ} contains no point of S. In this case condition (2.1) would be vacuously
true for any l ∈ C.
As in the real case, we have:

PROPOSIT ION 2.7. If z0 is a limit point of S and limz→z0 f (z) = l, the limit is unique.

Proof. Suppose that l² ±= l is another candidate for the limit. Take ε = 1
2
|l − l²| to find

δ1 > 0,δ2 > 0 such that

z ∈ S, 0 < |z− z0| implies | f (z)− l| < ε
z ∈ S, 0 < |z− z0| implies | f (z)− l²| < ε

Because z0 is a limit point, there exists z∗ ∈ S, where 0 < |z0 − z∗| < min(δ1, δ2). Then

|l− l
²
| = |l− f (z

∗
)+ f (z

∗
)− l

²
|

≤ |l− f (z∗)| + | f (z∗) − l²|

< ε + ε

= 2ε

contradicting the choice of ε.

Standard properties of complex limits may be proved using methods analogous to the
real case:

PROPOSIT ION 2.8. If limz→z0 f (z) = l, limz→z0 g(z) = k, then

(i) limz→z0 f (z)+ g(z) = l+ k

(ii) limz→z0 f (z)− g(z) = l− k

(iii) limz→z0 f (z)g(z) = lk

(iv) limz→z0 f (z)/g(z) = l/k (for l ±= 0)

Proof. Part (i) is routine. Part (ii) follows immediately if we first show that

limz→z0(−g(z)) = −k, which is trivial.
Part (iii) is a little trickier. Bear in mind that f (z0),g(z0) may not be defined since z0

need not belong to S. Write

| f (z)g(z)− lk| = | f (z)g(z) − lg(z)+ lg(z)− lk| (2.2)

≤ | f (z)− l||g(z)| + |l||g(z)− k| (2.3)
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Since limz→z0 g(z) = k, there exists δ0 > 0 such that

z ∈ S and 0 < |z− z0| < δ implies |g(z) − k| < ε

Therefore |g(z)| < |k| + ε = M, say, whenever 0 < |z− z0|. Therefore |g(z)| is bounded
above near (but not necessarily at) z0 byM.

Since limz→z0 f (z) = l, there exists δ1 > 0 such that

z ∈ S and 0 < |z− z0| < δ1 implies | f (z) − l| < ε/(2M)

Let N ∈ R such that N > |l|, so in particular N > 0. Since limz→z0 g(z) = k, there exists
δ2 > 0 such that

z ∈ S and 0 < |z− z0| < δ2 implies |g(z) − k| < ε/(2N)

For δ = min(δ0, δ1 , δ2) we then have

z ∈ S and 0 < |z − z0| < δ1 implies

| f (z) − l||g(z)| + |l||g(z)− k| <
ε

2M
M+ N

ε

2N
= ε

By (2.3), for z ∈ S and 0 < |z− z0| < δ2, we have

| f (z)g(z) − lk| < ε

proving (iii).
To prove (iv), it is enough to prove that limz→z0 1/g(z) = 1/k, and then to appeal to

(iii) for the functions f , 1/g.
For this to make sense we must show that for some δ1 > 0, g(z) is not zero when

z ∈ S and 0 < |z− z0| < δ1 . Then 1/g(z) is defined.
This follows since limz→z0 g(z) = k and k ±= 0. Indeed, there exists δ1 such that

z ∈ S and 0 < |z− z0| < δ1 implies |g(z) − k| < 1
2 |k|

which in turn tells us that

z ∈ S and 0 < |z − z0| < δ1 implies |g(z)| > 1
2
|k|

We now find δ2 such that

z ∈ S and 0 < |z− z0| < δ2 implies |g(z) − k| < 1
2|k|

2ε

Now, if δ = min(δ1, δ2),

z ∈ S and 0 < |z − z0| < δ implies
²
²
²
²

1

g(z)
−

1

k

²
²
²
²
<
|k − g(z)|

|g(z)k|
< 1

2 |k|
2ε/( 12 |k|

2) = ε

The real and imaginary parts of a complex function,

f (z) = re f (z) + i im f (z)

may be considered separately. If

lim
z→z0

f (z) = l = α + iβ (α, β ∈ R) (2.4)
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then, because

|re f (z) − α| = |re( f (z) − l)| ≤ |( f (z)− l)|

we deduce from the definition that

lim
z→z0

re f (z) = α (2.5)

Proposition 2.8 (ii) now implies that

lim
z→z0

im f (z) = β (2.6)

Conversely, if (2.5,2.6) both hold, Proposition 2.8 (i) implies (2.5).
We can rephrase the preceding argument by recalling that if S ⊆ R2 the limit of a real

function φ : S→ R of two variables, φ(x, y) for (x, y) ∈ S is defined as follows:

φ(x, y)→ λ as (x, y) → (a, b) if, given ε > 0, there exists δ > 0 such that

for all (x, y) ∈ S, 0 <
³
(x− a)2 + (y− b)2 < δ implies |φ(x, y)− λ| < ε

Identifying (x, y) with z = x+ iy ∈ C, and setting z0 = a+ ib, this may be written as

z ∈ S and 0 < |z− z0| < δ implies |φ(x, y) − λ| < ε

If we now write

f (z) = u(x, y) + iv(x, y)

where the real and imaginary parts of f are considered as real functions u and v of two
real variables x, y, we have proved:

PROPOSIT ION 2.9. Let z0 = a+ ib. Then limz→z0 f (z) = l = α + iβ if and only if

u(x, y)→ α v(x, y)→ β as (x, y)→ (a,b)

In this way, the limit of a complex functions is equivalent to the limit of a pair of real
functions of two real variables. However, the notation in the complex case is generally
simpler.

2.3 Continuity

The definition of continuity for a complex function mimics that for a real function, using
the complex version of the modulus:

DEFIN IT ION 2.10. A function f : S→ C is continuous at z0 ∈ S if, given ε > 0, there
exists δ > 0 such that

for all z ∈ S, |z− z0| < δ implies | f (z)− f (z0)| < ε

A function is continuous if it is continuous at every point z0 ∈ S.
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If z0 is a limit point of S, this is equivalent to saying that limz→z0 f (z) exists and

lim
z→z0

f (z) = f (z0)

If z0 is an isolated point of S then there is a neighbourhood Nδ(z0) that contains no
other points of S apart from z0, so

for all z ∈ S, |z − z0| < δ implies z = z0

which in turn implies

| f (z)− f (z0)| = 0

So a complex function is always continuous at an isolated point, according to the defi-
nition. Actually, this will not be an issue for us, because we will consider only functions
where all points of S are limit points. In fact, S is usually open. But it seemed worth
tidying up a potential loose end.
We can rephrase the definition of continuity in terms of open discs: f is continuous at

z0 ∈ S if, given ε > 0, there exists δ > 0 such that

for all z ∈ S, z ∈ Nδ(z0) implies f (z) ∈ Nε ( f (z0))

Or, more succinctly,

f (Nδ(z0)) ⊆ Nε( f (z0))

We can develop an alternative way to define continuous functions in terms of open
sets. First we need a generalisation: a subset V ⊆ S is said to be relatively open in S, or
just open in S for short, if for every z0 ∈ V there exists σ > 0 such that Nσ (z0)∩ S ⊆ V .

Example 2.11. A relatively open set need not be open. The interval (a,b) = {x ∈ R :

a < x < b} is open in R, but not in C. In fact, when S = C let x ∈ (a,b) and
suppose that σ > 0. Then x + iσ/2 ∈ Nσ (x) = Nσ (x) ∩ S, but x + iσ/2 ±∈ V . See
Figure 2.5.

Figure 2.5 The interval (a, b) is open in R but not in C.
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Using the standard set-theoretic notation

f
−1
(U) = {z ∈ S : f (z) ∈ U}

we get an alternative characterisation of a continuous function:

PROPOSIT ION 2.12. A complex function f : S → C is continuous if and only if, for
every open set U in C, the set f−1(U) is open in S.

Proof. Suppose that f is continuous and U is open. Let z0 ∈ f −1(U). Then f (z0) ∈ U so

there exists ε > 0 such that Nε( f (z0)) ⊆ U. By continuity of f there exists δ > 0 such
that

f (Nδ(z0)∩ S) ⊆ Nε( f (z0)) ⊆ U

Hence

Nδ(z0)∩ S ⊆ f−1(U)

and f−1(U) is open.
Conversely, suppose that f −1(U) is open in S for every open set U. Given z0 ∈ S and

ε > 0, the set Nε( f (z0)) is open, so f−1(Nε( f (z0))) is open in S and there exists δ > 0

such that

Nδ(z0)∩ S ⊆ f−1(Nε( f (z0)))

Hence

f (Nδ(z0)∩ S) ⊆ Nε( f (z0))

so f is continuous.

Proposition 2.12 is favoured by topologists as the definition of continuity. It is partic-
ularly useful when S is itself an open set. Then, given a subset V ⊆ S that is open in S,
and any z0 ∈ V, there exist σ , ε > 0 such that

Nσ (z0) ⊆ V (because V is open in S)
Nε(z0) ⊆ S (because S is open)

Taking δ = min(ε, σ ), we deduce that

Nδ(z0) ⊆ V

so V is an open set in C. This proves:

COROLLARY 2.13. If S ⊆ C is open, then f : S → C is continuous if and only if, for
every open set U, the inverse image f −1(U) is open.

Figure 2.6 illustrates this result.
Composition of two functions is defined in the usual manner: if f : S → C and

g : T → C where f (S) ⊆ T, then g ◦ f : S→ C is given by

g ◦ f (z) = g( f (z))
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Figure 2.6 Definition of continuity when S is open in C.

PROPOSIT ION 2.14. If f is continuous at z0 ∈ S and g is continuous at f (z0), then g ◦ f
is continuous at z0 .

Proof. Easy exercise.

Addition, subtraction, multiplication, and division of complex functions f1 : S → C

and f2 : S→ C are defined by

f1 + f2 : S→ C where ( f1 + f2)(z) = f1(z)+ f2(z) (z ∈ S)

f1 − f2 : S→ C where ( f1 − f2)(z) = f1(z)− f2(z) (z ∈ S)

f1f2 : S→ C where ( f1f2)(z) = f1(z)f2(z) (z ∈ S)

f1/f2 : S→ C where ( f1/f2)(z) = f1(z)/f2(z) (z ∈ S²)

Here S² = {z ∈ S : f2(z) ±= 0}.

Warning: the composition g ◦ f is often abbreviated to g f when it is clear that the
product is not intended.

PROPOSIT ION 2.15. If f1 and f2 are continuous, then so are f1 + f2 , f1 − f2, f1 f2 , and
f1/f2 (when f2(z) ±= 0).

Proof. This is a direct consequence of Proposition 2.8.

This result lets us show very quickly that certain functions built up from functions
known to be continuous are themselves continuous. For instance, the constant function
k(z) = c (where c ∈ C) and the identity function I(z) = z are clearly continuous. We

give the easy proofs. Let ε > 0. For k take any δ > 0; then

|z− z0| < δ implies |k(z)− k(z0)| = |c− c| = 0 < ε

For I take δ = ε; then

|z− z0| < ε implies |I(z) − I(z0)| = |z− z0| < ε
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On that basis, Proposition 2.15 shows immediately that f (z) = cz is continuous. By
induction on n, it follows that f (z) = czn is continuous for any n ∈ N. A further induction
proves that any polynomial function

f (z) = anz
n + an−1z

n−1 + · · · + a0

is continuous. Then any rational function p(z)/q(z), where p,q are polynomials, is con-
tinuous at any point z0 where q(z0) ±= 0. Using these ideas we seldom have to perform
any intricate epsilon-delta calculations.

Example 2.16. The modulus function m(z) = |z| is continuous for all z. Given ε > 0,

take δ = ε. Then

|m(z)− m(z0)| < ε implies ||z| − |z0|| ≤ |z− z0| < ε

using (1.12).

Example 2.17. f (z) = |z|2+17z3+1066z
1+z is continuous for z ±= −1. Proving this with an

explicit choice of δ for given ε is tedious and messy. A quicker way is to observe that
|z|2 = |z||z| and is therefore continuous, 17z3 + 1066z is a polynomial and so is also
continuous, and the same goes for z + 1. Since we are dividing by this, we must have
z ±= −1.

Writing f (z) = u(x, y)+iv(x, y) for z = x+ iy ∈ S, where u, v are real-valued functions
of the real variables x, y, Proposition 2.9 gives:

PROPOSIT ION 2.18. The function f (z) = u(x, y)+iv(x, y) is continuous at z0 = x0+iy0
if and only if u, v are continuous at (x0 , y0).

Example 2.19. If f (z) = z2 , then f (z) = (x+iy)2 = x2−y2+2ixy. Hence u(x, y) = x2−y2

and v(x, y) = 2xy. The function f is continuous for all z ∈ C, just as u, v are continuous
functions of x, y for all (x, y) ∈ R2 .

An interesting case occurs when S is the real interval

S = [a,b] = {x ∈ R : a ≤ x ≤ b}

considered as a subset of C. Here z = x + 0i, so we can simplify notation and write
f (z) = u(x)+ iv(x). Now the function f : [a,b]→ C is continuous if and only if both u
and v are continuous.

Example 2.20. f : [0, 1]→ C, where f (x) = x2+ ix3 is continuous, since both u(x) = x2

and v(x) = x3 are continuous.

Functions defined on a real interval play a central role because they define paths, as
we now discuss.
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2.4 Paths

In the early development of complex analysis, mathematicians worked out how to inte-
grate complex functions along paths inC, without worrying too much about the meaning

of ‘path’. This happened back in the days when notions of continuity and limits were
still under development. The intuitive idea of a path (or curve) was something that could
be drawn by moving a pencil (with an infinitely fine point) without making any jumps.

Such paths were assumed to have various nice properties, such as having a continuously
varying tangent, or not crossing themselves. These properties were not made explicit
until the foundational issues in analysis were sorted out, in particular by Bolzano and
Weierstrass.

Later it turned out that some of these assumptions are not necessary to develop a
satisfactory theory of integration, while others must be made precise to avoid running
into contradictions. We have no wish to make readers repeat all the twists and turns of
history; as we have said, some battles have already been won. But from time to time

we find it useful to point out some of the pitfalls that can arise, and to emphasise some

subtle distinctions – for example, the definition of a path as a map γ from a real interval
[a,b] into the complex plane, and the distinction between this map and its image. Our
pictures generally show the image, leaving the reader to infer the map. We often add an
arrow as a reminder that as a parameter t runs through the interval [a,b], the point γ (t)
moves along the image in a specific direction.
One of the pleasant features of complex analysis is that fairly often that information

is all we need. At various points in the book we also find it useful to impose further
conditions on paths, to ensure that they have appropriate properties.
The upshot of more than a century of deep contemplation and debate is the following

definition:

DEFIN IT ION 2.21. A path in the complex plane is a continuous function

γ : [a, b] →C (a ≤ b ∈ R)

Its initial point is γ (a) and its final point (or end point) is γ (b).

Sometimes we speak of γ as ‘a path in C from z1 to z2’ when z1 = γ (a) is the initial
point and z2 = γ (b) is the final point. When t ∈ [a, b] we also refer to z = γ (t) as a
‘point on the path γ ’, although strictly speaking z is on the image of the function γ . If
we think of t as ‘time’ and imagine t increasing from a to b, the point γ (t) traces a curve
in the plane from γ (a) to γ (b). When drawing a diagram we often indicate the direction
of motion (increasing t) by an arrow, as in Figure 2.7. However, it must be emphasised

that this is a makeshift device since the curve may cross itself or turn back on itself, so
the picture may get quite complicated. We pick up this point again in Section 6.7.

2.4.1 Standard Paths

To simplify matters, when we speak of line segments and circles, considered as paths,
we assume they are specified by the following standard functions:
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Figure 2.7 A path in C, showing its parametrisation by t ∈ [a, b].

(i) The line segment L = [z1, z2] from z1 to z2 is

L(t) = (1− t)z1 + tz2 (t ∈ [0, 1])

When z1 = a, z2 = b ∈ R then the image of the path is the closed interval [a, b] ⊆
R ⊆ C.

(ii) The unit circle C:

C(t) = cos t + i sin t (t ∈ [0, 2π ])

(iii) The circle S with centre z0 and radius r ≥ 0:

S(t) = z0 + r(cos t + i sin t) (t ∈ [0, 2π ])

See Figure 2.8.

Figure 2.8 Three standard paths.
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Figure 2.9 ‘Graphs’ of paths considered as functions [a, b]→ C. Left: A path that travels once
along the image in a fixed direction. Right: A path that travels once along the image, turns round
and travels back, then turns again and travels along the image for a third time.

2.4.2 Visualising Paths

We are used to visualising a function f : R→ R using the corresponding graph y = f (x)

in the plane. A similar idea can be exploited to visualise paths in a more explicit way.
Figure 2.9 shows analogues of graphs for two maps γ : [a,b] → C. The arrows join
representative points t ∈ [a,b] to their images γ (t) ∈ C. The left-hand figure illustrates
a path where γ (t) travels along the image without turning back on itself. The right-hand
figure illustrates a path where γ (t) travels along the image to the far end, turns back on
itself to revisit the start, then turns back again to travel along the image for a third time.
Although paths like this are seldom encountered in practice, they are allowed by the
definition, so we have to take that possibility into account. Example 6.17 below shows
that simple formulas can produce this type of behaviour.
An alternative would be to change the definition to rule out such behaviour, but most

of the theory works in the general case with no extra effort, so it turns out to be simpler
to leave the definition as it stands, while bearing in mind that simple pictures might be
misleading in some respects.

2.4.3 The Image of a Path

To emphasise the distinction between a path and its image we introduce a further
definition:

DEFIN IT ION 2.22. A curve C from z1 to z2 in the complex plane is a subset of C that
is equal to the image of a path γ : [a, b]→ C, where γ (a) = z1 and γ (b) = z2.

Given a curve C, a parametrisation of C is a path σ : [c, d]→ C such that C is the
image of σ , where σ (a) = z1 and σ (b) = z2.

The corresponding parameter is a variable t ∈ [a, b].
We sometimes call [a, b] the parametric interval of σ .
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Figure 2.10 The two distinct paths γ1 ,γ2 have the same image, so they define the same curve.

If we think of t as ‘time’, and imagine a particular parametrisation γ : [a,b] → C,

then as t increases from a to b the point γ (t) traces the corresponding curve in the plane
from γ (a) to γ (b), moving continuously with t.

Example 2.23. The same curve may be traced by many different paths. For example, in
Figure 2.10 the paths

γ1(t) = 2(t + it) (0 ≤ t ≤ 1
2 )

γ2(t) = t2 + it2 (0 ≤ t ≤ 1)

traverse the same curve

{x+ iy ∈ C : x = y, 0 ≤ x ≤ 1}

2.5 Change of Parameter

Definition 2.21 equips every path γ : [a,b]→ C with a parameter t ∈ [a,b]. It is often
convenient to change the parameter and its parametric interval, because suitable choices
can simplify calculations and proofs. In this section we discuss such changes.
We begin with Example 2.23, which distinguishes a path from its image by exhibiting

two different paths that have the same image curve. Dynamically, these two paths trace
the same curve in the same direction, but at different speeds. They are related by the
change of parameter ρ : [0, 12] → [0, 1], where ρ(t) = 1

2 t
2 . This has an inverse map

ρ
−1 : [0, 1]→ [0, 1

2
] given by ρ−1(s) =

√
2s.

We now discuss general changes of parameter, defined as follows:

DEFIN IT ION 2.24. Let γ : [a, b] → C be a path, and suppose that ρ : [c,d] → [a,b]

is continuous and satisfies
ρ(c) = a ρ (d) = b
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so in particular ρ is onto [a, b]. Then the composition γ ◦ ρ : [c,d]→ C is also a path.
We call γ ◦ ρ a reparametrisation of γ .

Note that the parametric interval changes when [c,d] ±= [a,b].

2.5.1 Preserving Direction

If we impose extra conditions on ρ, a change of parameter can preserve extra properties.
The image of the path is important, but another property is also vital: the direction in
which the path is traced. Now our mental image involves the dynamics of a point moving

along the path, as well as the image that it traces out.
At this stage we are working with general continuous paths, so we adopt the fol-

lowing approach. Recall that a map σ : [a,b] → [c,d] is strictly increasing if

a ≤ t1 < t2 ≤ b implies σ (t1) < σ (t2). Both of the above maps ρ and ρ−1 are strictly
increasing.

In real analysis it is proved that any strictly increasing continuous map has a strictly
increasing continuous inverse. We give the easy proof for completeness:

LEMMA 2.25. If ρ : [a, b] → [c, d] is continuous and strictly increasing with ρ(a) = c

and ρ(b) = d, then ρ has a strictly increasing continuous inverse ρ−1 : [c,d]→ [a,b].

Proof. If s ∈ [c, d] then ρ(a) ≤ s ≤ ρ(b). By the Mean Value Theorem there exists
t ∈ [a,b] such that ρ(t) = s. This determines a strictly increasing inverse function
ρ−1 : [c,d] → [a, b], where ρ and ρ−1 both map open intervals to open intervals, so
ρ−1 is also continuous.

We can now state:

DEFIN IT ION 2.26. Let C be a curve, parametrised by two maps γ : [a,b] → C and

λ : [c,d] → C. The maps have the same direction if there is a strictly increasing function
ρ : [a,b]→ [c,d] such that

γ = λ ◦ ρ

Then ρ is a direction preserving change of parameter.

If the change in parameter ρ is not increasing, it can lead to part of the curve being
traced back and forth as t increases. In Figure 2.11, as t increases from p to q, the value
of ρ(t) increases, then decreases, then increases again. As this happens, the points on
the curve from P to Q are traversed first in the direction from P to Q, then back to P,
then from P to Q once more. The curve is the same, but the distance travelled increases.
This means that when we calculate the length of a curve, defined in Section 6.3, we must

prescribe how the curve is traced.

2.6 Subpaths and Sums of Paths

In the general theory, and in applications, it is useful to be able to chop paths into pieces,
or join pieces together.
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z-plane
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Q

Figure 2.11 Left: A change in parameter. Right: If ρ has a graph like this then the parameter t

changes direction along the image curve.

DEFIN IT ION 2.27. For an arbitrary path γ : [a,b] → C, a subpath is obtained by
restricting γ to a subinterval [c,d], where a≤ c ≤ d ≤ b. If

a= x0 < x1 < · · · < xn = b

and γr is the subpath obtained by restricting γ to [xr−1 , xr], we write

γ = γ1 + · · · + γn

In so doing, we think of γ as being made up by tracing along the paths γ1 , . . . , γn taken

in order, see Figure 2.12.

Figure 2.12 Decomposing a path into subpaths.

Similarly, if the final point of a path γ1 coincides with the initial point of a path γ2 ,
it is useful on occasion to create a combined path by first tracing γ1 and then γ2. There
is a minor technicality here, because γ1(b) can be the same as γ2(c) even though γ1 is

defined on [a,b] and γ2 defined on [c,d] where b ±= c. The next example shows how to
get round this difficulty.
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Figure 2.13 Joining two paths by shifting parameters.

Example 2.28. Suppose that

γ1(t) = t (t ∈ [0, 1])
γ2(t) = cos t + i sin t (t ∈ [0,π])

as in Figure 2.13. Here γ1(1) = γ2(0) but 1 ±= 0.

In such a case we extend our notation a little. Suppose that γ1 : [a,b] → C, and
γ2 : [c,d] → C, with γ1(b) = γ2(c). Then we define the combination γ = γ1 + γ2 :

[a,b+ d − c]→ C by

γ (t) =

±
γ1(t) (t ∈ [a,b])

γ2(t + c− b) (t ∈ [b,b+ d− c])

In effect, what we have done is to shift the parametric interval of the second path from
[c,d] to [b,b+ d − c], by adding b− c to all points in [c, d].
In Example 2.28, for instance,

γ (t) =

±
t (t ∈ [0, 1])
cos(t− 1)+ i sin(t− 1) (t ∈ [1, 1+ π])

and γ consists of the line segment γ1 followed by the semicircle γ2.

The path γ1 + γ2 is defined only when the final point of γ1 is the same as the initial
point of γ2, so perhaps this is not a fully appropriate use of the + sign. However, we do
have

(γ1+ γ2)+ γ3 = γ1 + (γ2 + γ3) (2.7)

whenever the appropriate end points coincide, so we can omit the parentheses in such a
‘sum’, and more generally write γ1 + · · · + γn to indicate the path obtained by succes-
sively tracing γ1, . . . ,γn, whenever the final point of each γr−1 coincides with the initial
point of γr(1 ≤ r ≤ n).
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Equation (2.7) states that addition of paths is associative, but in general it is not com-

mutative. Exercises 7 and 8 provide simple examples to show that when γ1 + γ2 is

defined, γ2 + γ1 may not be, and even when it is, γ1 + γ2 need not equal γ2 + γ1.

For a path γ : [a,b]→ C, another useful concept is the opposite path −γ : [a, b] →
C defined by

−γ (t) = γ (a+ b− t) (t ∈ [a,b])

As t increases from a to b, so −γ describes the same curve as γ , but it does so in the
reverse direction. If γ is a path from z1 to z2, then −γ is a path from z2 to z1 .

Example 2.29. Suppose that L is the line segment [z1, z2] given by

L(t) = (1 − t)z1 + tz2 (t ∈ [0, 1])

Then −L is given by

−L(t) = tz1+ (1− t)z2 (t ∈ [0, 1])

which is, of course, [z2, z1].
If S is the circle centre z0 and radius r ≥ 0, then

S(t) = r(cos t + i sin t) (t ∈ [0, 2π ])

describes the circle once, anticlockwise, while the opposite path

−S(t) = z0 + r(cos(2π − t) + i sin(2π − t)) (t ∈ [0, 2π ])
= z0 + r(cos t − i sin t) (t ∈ [0, 2π ])

describes it once, clockwise.

In a sum such as γ1 + (−γ2) + γ3 we omit the parentheses and write γ1 − γ2+ γ3 .

This is the path that traces first along γ1, then back along the opposite path to γ2 ,

and then along γ3. As always, the appropriate final and initial points must agree. See
Figure 2.14.

Figure 2.14 The path γ1 − γ2 + γ3.
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Figure 2.15 The pathCR + L1 − Cε + L2.

Example 2.30. Suppose that 0 < ε < R and

CR(t) = R(cos t + i sin t) (t ∈ [0,π ])

Cε (t) = ε(cos t + i sin t) (t ∈ [0,π ])

L1(t) = t (t ∈ [−R,−ε])

L2(t) = t (t ∈ [ε, R])

Then CR +L1− Cε +L2 is the path describing the curve in Figure 2.15 once, anticlock-
wise.

2.7 The Paving Lemma

We now come to a technical lemma that plays a vital role in our approach to complex

integration, which we call the Paving Lemma. This result is so important that we present
two different proofs of it. To set it up, we first need another piece of terminology.

A path γ : [a,b]→ C is said to be a path in S if the image

{γ (t) : t ∈ [a,b]} ⊆ S

We signify this by writing γ : [a,b]→ S.

Example 2.31. The unit circle C(t) = cos t + i sin t (t ∈ [0, 2π]) is a path in the region
S = {z ∈ C :

1
2 ≤ |z| ≤ 2}, Figure 2.16.

A region of this form, contained between two concentric circles, is called an annulus.

This example is very simple. It must not lull us into a false sense of security: far more

intricate paths are possible.



44 Topology of the Complex Plane

Figure 2.16 Path in an annulus.

Figure 2.17 A more complicated path.

Example 2.32. Let V = {z ∈ C : z ±= 1/n for a non-zero integer n} and define

σ (t) =

±
t + it cos(π/t) (t ∈ [−1, 1] \ {0})
0 (t = 0)

Then σ is a path in V , Figure 2.17. Here σ winds in between the points 1/n where n is

a non-zero integer, crossing the real axis when t = 1/(n+ 1
2 ).

It does not take much imagination to realise that an open set S can be very compli-

cated, and a path γ can be intertwined in S in a very intricate manner. The space-filling
curve described in Section 2.9 is given by a path whose image is the unit square, includ-
ing its interior. Much more complicated images are possible. Rather than trying to
imagine all possible intricacies, we sidestep the issue, as follows. If S is an open set,
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Figure 2.18 Paving a path with a sequence of discs. But could this process get stuck?

we can cover γ with a finite number of open discs, all contained in S. Then we use the
discs to simplify the path, as the next result explains.

LEMMA 2.33 (Paving Lemma). Let γ : [a, b] → S be a path in an open set S. Then
there exists a subdivision a = t0 < t1 < · · · < tn = b such that each subpath γr

obtained by restricting γ to [tr−1, tr] lies inside an open disc Dr ⊆ S.

Proof. Because S is open, there is an open disc D1 such that γ (a) ∈ D1 ⊆ S.

The idea of the proof is that if the path has been paved up to some point, we can
always add another disc to take the paving further, unless we have reached the far end.
Making this argument rigorous takes a little care, however, as we now indicate.
The disc D1 is the first in a sequence of discs, obtained by moving along the path,

covering it bit by bit with discs as in Figure 2.18. The existence of D1 shows we can get
started. Indeed, since γ is continuous, there exists δ > 0 such that

γ (t) ∈ D1 whenever a ≤ t < a+ δ (2.8)

Our only fear is that we might not progress all the way; for instance, the discs might

decrease dramatically in size and we might never reach the end. Some real analysis
dispels this fear. If a ≤ x ≤ b, say that γ restricted to [a, x] ‘can be paved’ if it can
be subdivided into a finite number of subpaths γ1 , . . . ,γm, where each γr lies inside an
open disc Dr ⊆ S. Let P be the set of all x ∈ [a,b] such that [a, x] can be paved. We

know that a ∈ P so P is non-empty.

Also P is bounded above by b. Therefore, by real analysis, P has a least upper bound
c, where a≤ c ≤ b. We claim that c = b, which will prove the lemma.

For a contradiction, suppose that c < b. Since S is open, there exists an open disc D

such that c ∈ D ⊆ S. By continuity of γ , there exists ε > 0 such that if c− ε < t < c+ε

and t ∈ [a, b], the image γ (t) ∈ D.

By (2.8), a + δ/2 ∈ P, so c > a. Since c is the least upper bound of P, there exists
x ∈ Pwith c−ε < x < c. Therefore the segment {γ (t) : a ≤ t ≤ x} can be paved by open
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discs D1 , . . . ,Dm all lying inside S. Let Dm+1 = D. Then the segment {γ (t) : a ≤ t ≤ c}

can be paved by open discs D1 , . . . ,Dm,Dm+1 all lying inside S.
Finally, we claim that c = b. If c < b, continuity of γ implies that γ (c+ t) ∈ D for

all t such that 0 < t < τ , therefore [a, c+ τ/2] can be paved, contradicting c being an
upper bound for P. Therefore c = b so [a, b] can be paved as required.

For future reference, and because this result is used repeatedly, we now give a second
proof, which in some respects is simpler. A generalisation to two dimensions will also
prove useful in Proposition 9.5.

Alternative Proof of Lemma 2.33. We show more: the subdivision can be obtained by
repeatedly bisecting [a,b] a finite number of times. For the purposes of this proof only,
it is useful to define and interval to be pavable if it can be bisected repeatedly a finite
number of times into closed intervals, so that the image of every interval obtained in this
manner lies inside a disc in D. Otherwise, the interval is unpavable.
Suppose the result is false. Then [a, b] is unpavable. Bisect [a,b] to get two closed

intervals, intersecting at the midpoint. At least one these intervals, call it I1 , is unpavable.
Otherwise we could pave a finitely repeated bisection of each interval by finitely many

discs, whose union paves [a,b].
Bisect I1. The same argument applies to the two halves, so we get an unpavable

closed interval I2 ⊆ I1 of half the size. Because we are assuming the result false, this
sequence of bisections continues indefinitely to give a nested sequence of unpavable
closed intervals

[a,b] ⊇ I1 ⊇ I2 ⊇ · · ·

each half the size of the previous one.
The intersection of these intervals is easily seen to be a unique point z0 ∈ D (Cauchy

sequences of real numbers converge). However, D is open, so there is a discNε (γ (z0)) ⊆

D. Since γ is continuous, γ−1(Nε (γ (z0))) is open in [a,b] and contains z0. Therefore it
contains In for sufficiently large n. Now In ⊆ Nε(γ (z0)), so it is pavable (with one disc),
a contradiction.

In Example 2.31, for any point on the unit circle C, we have N1/2(z) ⊆ S. Clearly a
finite number of such discs will pave C within S, Figure 2.19.
However, the path in Example 2.32 cannot be paved by a finite number of discs in V .

Any disc containing the origin (which lies on σ includes points of the form 1/n lying

outside V . But this also means that V is not open. So the conditions required for the
Paving Lemma are not satisfied.
Readers familiar with basic point-set topology will recognise that the proof is ‘really’

about the compactness of the closed interval [a, b]. We prefer not to develop the abstract
machinery of compactness here; the Paving Lemma performs the same task.

2.8 Connectedness

We now define an important topological property, which is central to the theory of
complex functions.
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Figure 2.19 Paving a circular path inside an annulus is easy.

Figure 2.20 A disc is path-connected.

DEFIN IT ION 2.34. A subset S ⊆ C is path-connected if, given z1 , z2 ∈ S, there exists
a path γ in S from z1 to z2 .

Example 2.35. Any open disc Nr(z0) is path-connected. For, given z1 , z2 ∈ Nr(z0), let
L(t) = (1− t)z1 + tz2, (t ∈ [0, 1]). Then

|L(t)− z0)| = |(1− t)z1 + tz2 − z0|

= |(1− t)z1 − (1− t)z0 + tz2 − tz0|

≤ (1− t)|z1 − z0| + t|z2 − z0|

< (1− t)r+ tr = r

so the line segment L lies in Nr(z0). See Figure 2.20.

Example 2.36. The set S = {z ∈ C : z = t + it2 , t ∈ R} is path-connected. For if t1+ it21
and t2 + it22 ∈ S where t1 ≤ t2 , then γ (t) = t + it2 (t ∈ [t1 , t2]) is a path in S between

those points. See Figure 2.21.
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Figure 2.21 The set {z ∈ C : z = t + it2 , t ∈ R} is path-connected.

Figure 2.22 A step path.

It is often convenient to use a very simple type of path.

DEFIN IT ION 2.37. A step path in S is a path γ : [a,b]→ S together with a subdivision
a = t0 < t1 < · · · < tn = b such that on each subinterval [tr−1 , tr] either re γ or im γ
is constant. This means that the image of γ consists of a finite number of straight line
segments, each parallel to the real or imaginary axis, see Figure 2.22.
In other words, γ is a step path if γ = γ1 + · · · + γn where each γr is a line segment

parallel to the real or imaginary axis.
A subset S ⊆ C is step-connected if, given z1 , z2 ∈ S, there exists a step path γ in S

from z1 to z2 .

Evidently a step-connected path is path-connected. The converse, however, is not
always true: Example 2.36 is path-connected but not step-connected. A path as simple as
the diagonal line segment [0, 1 + i] is path-connected but not step-connected. The main

issue here is that unlike a general continuous path, a step path consists of finitely many
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straight line segments. But the requirement that these segments should be horizontal or
vertical also comes into play.
These considerations are mentioned here to help develop intuition, but they do not

cause problems for the theory, because every path-connected open set is step-connected.
This constitutes the first success – albeit a minor one – for the Paving Lemma. To prove
this, we first observe a simple fact:

LEMMA 2.38. Any open disc is step-connected.

Proof. Consider an open disc S = Nr(z0). Changing coordinates to z − z0 (translating

the origin) we may assume without loss of generality that z0 = 0. Let z1 = x1+ iy1 ∈ S.

We show that there is a step path in S from z1 to the centre 0. Let L1 be the (vertical)
line segment from z1 to x1 , and L2 be the (horizontal) line segment from x1 to 0. Then
simple inequalities show that L1 and L2 are inside S, and L1 + L2 is a step path from z1

to 0.
By the same argument, if z2 ∈ S there is a step path L3 + L4 in S from z2 to 0. But

now L1 + L2 − L4− L3 is a step path in S from z1 to z2.

We can now prove:

PROPOSIT ION 2.39. A path-connected open set is step-connected.

Proof. Let z1, z2 in S, which is open, and let γ be a path from z1 to z2 in S.

By the Paving Lemma there is a finite sequence of open discs D1, . . . ,Dr ⊆ S and a
path γr in each Dr such that γ = γ1 + · · · + γr .

By Lemma 2.38 there is a step path σr in each Dr with the same initial and final points
as γr . Now σ = σ1 + · · · + σr is a step path in S from z1 to z2 .

On the other hand, the parabola S in Example 2.36 is path-connected, but not step-
connected. This does not conflict with the proposition above, because S is not open
in C.

Arbitrary sets need not be path-connected. However, for any set S we can define the
relation z1 ∼ z2 (z1, z2 ∈ S) to mean that there is a path in S from z1 to z2 . It is easy to
see that ∼ is an equivalence relation (Exercise 7 below) and that each equivalence class
is path-connected. These equivalence classes are called the path-connected components,
or for simplicity the connected components or just components of S. (We always take S
open in the sequel, so here is no conflict with the more general notions of connectedness
and connected components that are standard in point-set topology, but irrelevant here.)
For instance, the connected components of

A = {z ∈ C : |z| ± = 1}

are clearly
A1 = {z ∈ C : |z| < 1} A2 = {z ∈ C : |z| > 1}

If S is open then its connected components are all open: given z0 in a connected com-

ponent S0 of S, since some Nr(z0) ⊆ S and Nr(z0) is path-connected, we must have
Nr(z0) ⊆ S0 , so S0 is open.
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A particularly interesting case is the complement of the image of a path γ : [a, b] →
C, or more briefly the complement of a path, by which we mean

{z ∈ C : z ±= γ (t) for any t ∈ [a,b]}

The complement may be connected, for instance when

γ (t) = t (t ∈ [0, 1])

On the other hand, it may have two or more components, Figure 2.23.
Indeed, the complement of γ = γ1 − γ2 , where

γ1(0)= 0, γ1(t) = t + it sin(π/t) (0 < t ≤ 1)

γ2(0)= 0, γ2(t) = t − it sin(π/t) (0 < t ≤ 1)

has infinitely many components, Figure 2.24.

DEFIN IT ION 2.40. A subset S ⊆ C is bounded if there exists K ≥ 0 such that |z| ≤ K

for all z ∈ S.

A subset S ⊆ C is unbounded if it is not bounded.

Figure 2.23 Paths whose complements have one, two, or three components.

Figure 2.24 A path whose complement has infinitely many components.
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However complicated a path may be, we can prove:

PROPOSIT ION 2.41. (i) The image of a path in C is closed and bounded.
(ii) The complement of a path in C is open, and precisely one component is unbounded.

Proof. For the second part of (i), let the path be γ : [a,b] → C, and let m(t) = |γ (t)|.
Since it is the composition of two continuous functions, m : [a,b] → R is continuous.
By real analysis it is bounded, say m(t) ≤ K, whence |γ (t)| ≤ K for all t ∈ [a, b] and
the image of [a,b] lies inside the disc centre 0 of radius K.
The first part of (i) follows from (ii).
To prove (ii), suppose that z0 lies in the complement T of γ . Then

µ(t) = |γ (t) − z0|

is a positive real number for all t ∈ [a,b]. Further, µ is continuous, so it is bounded and
attains its bounds. That is, there exists k ≥ 0 such that µ(t) ≥ k for all t ∈ [a, b], and
there exists t0 ∈ [a,b] such that µ(t0) = k.

If k = 0 then z0 ∈ γ ([a, b]), but it is in T . So k > 0. Then Nk(z0) ⊆ T , so T is open.
Finally, the image of γ lies inside

A = {z ∈ C : |z| ≤ K}

and the complement

B = {z ∈ C : |z| > K}

is clearly connected. Therefore any unbounded component of T intersects B, and since
components are disjoint, at most one of them can do so. Further, B lies inside some

component, so there is exactly one unbounded component.

REMARK 2.42. A closed, bounded set in Rn, in particular one in C = R
2 , is said

to be compact. Compactness is a very important property in point-set topology (where
the definition is given in a more general form). In this text we do not need to set up
the full machinery of compactness, because the simple cases that arise can be tackled
bare-handedly using real analysis – as we did in proving Proposition 2.41.
We now define a special type of set that is fundamental to the theory in this text.

DEFIN IT ION 2.43. A domain is a non-empty, path-connected, open subset of the
complex plane.

By Proposition 2.39, a domain is also step-connected, and this property will be useful
later. This means that we can refer to a domain as being ‘connected’, meaning either
path- or step-connected as appropriate.
As the theory of complex analysis unfolds, the reader will see the immense impor-

tance of this definition. We restrict the concept of a complex function f to those of the
form f : D → C where D is a domain. Openness of D lets us deal neatly with limits,

continuity, and differentiability, because z0 ∈ D implies that Nε (z0) ⊆ D for some ε > 0,

so f (z) is defined for all z near z0 . Connectedness of D guarantees there is a (step-) path
between any two points in D, which lets us define the integral of f along such a path.



52 Topology of the Complex Plane

However, restricting complex functions to those defined on domains has far subtler
consequences than merely providing a platform for the appropriate definition. Those
who have studied the intricacies of real analysis in depth will find untold riches in com-
plex analysis, quite unlike the real case. For instance, if two differentiable complex
functions are defined on the same domain D and they happen to be equal on a small
disc in D, they are equal throughout D. No such result holds for general differentiable
functions in the real case. This result is just one of many that illustrate the beauty and
simplicity of complex analysis. We shall not prove it until Chapter 10, but we mention
it here to underline the fundamental importance of establishing appropriate topological
foundations for the subject.

2.9 Space-filling Curves

A space-filling curve is defined by a path whose image fills a two-dimensional region,
typically the unit square. Such curves show that our default mental image of a continuous
path can be distinctly misleading. To explain why care is needed, we digress to describe
one simple construction of such a path.
Let U2 be the unit square {x+ iy : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

DEFIN IT ION 2.44. A space-filling curve is a continuous path γ : [0, 1] → U2 such

that the image of γ is the whole of U2 .

Giuseppe Peano constructed the first space-filling curve in 1890, motivated by Georg
Cantor’s proof of 1878 that [0, 1] and U2 have the same transfinite cardinal. In 1879
Eugen Netto had proved that there is no continuous bijection between these sets; Peano
showed that such a map exists if we do not require it to be bijective. In 1891 Hilbert
published another example of a space-filling curve, and included a picture. Both con-
structions are fairly complicated: Figure 2.25 shows early stages in their construction.
Many others have since been found. Details can easily be found on the Internet, and are
given in Sagan [18] and Bader [2].
We give a simpler construction, which at each stage produces a curve whose image is

a square grid.
Peano’s result was unexpected because it challenges the naive notion of ‘dimension’.

A curve has dimension 1, but U2 has dimension 2. It was counterintuitive that a contin-
uous map can increase the dimension of a space. Exercises 15–17 show that there is no
bound on the size of this increase. This phenomenon led to more careful theories of the
concept of dimension for topological spaces, and the realisation that stronger conditions
than continuity are needed for some intuitively plausible properties to hold.
The idea behind the construction of such curves is purely topological. It relies on

simple properties of uniform convergence, as studied in real analysis courses. It requires
the definition and properties of the closure of a subset S ⊆ C, stated in Definition 2.5.

PROPOSIT ION 2.45. Let γn : [0, 1] → U2 be a sequence of continuous paths, for
n ∈ N. Suppose that:
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Figure 2.25 Left: An early stage in the construction of Peano’s space-filling curve. Right: An early
stage in the construction of Hilbert’s space-filling curve.

(i) The sequence of functions (γn) is uniformly convergent.
(ii) The closure of the union of the images of all γn is the whole of U2 .

Then the limit

γ = lim
n→∞

γn

is continuous, and its image is U2 .

Before giving the proof, it must be made clear that we are not just asserting that γ
comes close to every point of U2 . It actually passes through every point of U2 in the
sense that if z ∈ U2 there exists t ∈ [0, 1] such that γ (t) = z. In contrast, the union of the
images of the γn is not the whole of U2 . It is just dense inU2: that is, its closure is U2 .

Proof. By condition (i), a basic theorem in real analysis implies that the limit γ exists

and is continuous.
Let z ∈ U2 . By condition (ii), for each m > 0,m ∈ N, there exists tm ∈ [0, 1] and

nm ∈ N such that

|γnm(tm )− z| <
1

m

The subsequence γnm also tends uniformly to γ . The sequence (tm) lies in [0, 1] which
is closed and bounded, so it has a convergent subsequence, with limit t0. We claim that
γ (t0) = z. By uniform continuity, if m is large enough,

|γnm(t0)− γ (t0)| <
1

m

So

|γ (t0)− z| <
2

m

for all m, so γ (t0) = z as claimed.
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We now construct such a sequence of maps γn : [0, 1] → U2. We prescribe it
geometrically, but making the construction precise is routine.
Define γ0 so that its image is the boundary of U2 described anticlockwise, parame-

terised proportionally to arc-length; see top left of Figure 2.26.
To obtain γ1, replace each segment of γ0 by a T-shaped polygon, as shown at the

bottom of Figure 2.26. The extra part of the T always extends to the left of the segment,

as oriented by the arrow. The path γ1 goes along the original path to its midpoint, turns
left, turns back on itself to return to the midpoint, and then continues along the original
segment to its end point. If we do this for each of the four segments of γ0 and add the
T-shaped paths (whose ends and starts fit together correctly) we obtain the path γ1 at

top right of Figure 2.26. For clarity, the grey polygon shows the direction in which t

traverses γ1 .

This path visits the centre of the square four times, but all segments are treated in
the same manner, making it easier to define the γn inductively. We scale the arc-length
parametrisation so that each γn has the same parametric interval [0, 1].
We now repeat the same construction on every straight segment of γ1 to obtain γ2 ,

and continue inductively to define γn for all n ∈ N.
The image of γn is a square grid of lines separated by distance 2−n . Clearly the union

of these images is dense in U2: it consists of all z = x+ iy for which either x or y is of
the form m2−n for 0 ≤ m ≤ 2n, where m ∈ N. So condition (i) holds, and we can define
γ as the limit of the γn .
By considering the construction step at the bottom of Figure 2.26, it is easy to prove

that

|γn(t)− γn+1(t)| ≤
√
2 · 2−n

from which condition (ii) follows (by summing a geometric series).
Therefore γ is a space-filling curve by Proposition 2.45.
Although the image of γn is a grid, the actual structure of γ becomes increasingly

complicated because of the way it zigzags back and forth. If we write

Figure 2.26 Inductive step used to construct a space-filling curve.
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Figure 2.27 Graphs of real and imaginary parts of γ0 , γ1 . Grey lines included for comparison
purposes.

γn(t) = xn(t)+ iyn(t)

so xn , yn : [0, 1]→ [0, 1], then Figure 2.27 shows the graphs of x0, y0 and x1 , y1 .
The slopes of the parts of these graphs that are not horizontal become increasingly

steep as n increases. Nevertheless, the limit is continuous – because of uniform conver-
gence, and more intuitively, because the intervals on which such slopes occur become
arbitrarily small (though there are increasingly many such intervals).
Exercise 15 shows that the unit hypercube in Rn is also the continuous image of an

interval inR. In fact, far more complicated sets can be the images of space-filling curves.
The last word in such results is the Hahn–Mazurkiewicz Theorem: proved by Hans Hahn
and Stefan Mazurkiewicz. This states that a set S is the image of a continuous map from
[0, 1] to a Hausdorff topological space if and only if S is compact, connected, locally
connected, and metric. See Hocking and Young [9], page 129.

2.10 Exercises

1. Let z0 ∈ C and a, b ∈ R be arbitrary. Draw the set consisting of all z ∈ C satisfying
the following conditions. In each case, state whether the set is open, closed, or
neither.

(i) 1< |z| < 2

(ii) re z ≥ 0 and im z ≤ re z

(iii) re z ≥ 0 and 1 < |z| < 2
(iv) re(zz0) > 0
(v) a< arg(z− z0) < b where −π < a < b ≤ π

(vi) |z− z̄0| = |z̄− z0|

(vii) |z− z̄0| < |z̄− z0|

(viii) |z− z̄0| ≤ |z̄− z0|

(ix) re(z2) > 0
(x) re(z2) ≤ 0
(xi) re(z2) > 1
(xii) re(z2) ≤ 1

2. Prove Proposition 2.8 parts (i) and (ii).
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3. Find the following limits, if they exist. If they do not exist, explain why.
(i) limz→0 |z|/z
(ii) limz→0 |z|2/z
(iii) limz→0 z/|z|2
(iv) limz→0(z− re z)/im z

4. Prove from first principles that the following functions are continuous:
(i) re z
(ii) im z

(iii) z+ |z|
(iv) 1/z (z ±= 0)
(v) |z|2

5. Prove Proposition 2.14.
6. For each of the following sets and pairs of points, define (if possible) (a) a path in
the set between the two points, and (b) a step path in the set between the two points.
(i) |z| < 2; 1+ i, 1− i
(ii) |z| = 1;−i, i
(iii) 1 ≤ |z| ≤ 2;

√
2,−

√
2

(iv) |re z| > 5;−9+ 37i, 1066 + i(π +
√
5/17)

(v) |1− |z|| > 1
2; i/3, 49(1 + i)

7. Let γ1 = [i, 0] and γ2 = [0, 1]. Show that γ1 + γ2 is defined, but γ2 + γ1 is not.
8. Let γ1 = [0, 1] and γ2 = [1, 0]. Show that γ1+γ2 and γ2+ γ1 are both defined, but
they are different paths.

9. Let S be a subset ofC. If z,w ∈ S, define z ∼ w if and only if there is a path from z to

w. Show that∼ is an equivalence relation. The equivalence classes are components
of S. If S is open and non-empty, show that each component is a domain.

10. Let S be a path-connected subset of C, and let f : S→ C be a continuous function.
Prove that f (S) is path-connected (even though it may not be open).

11. Give explicit functions for paths that describe the curves of Figure 2.28 in the direc-
tion indicated by the arrows. (All subpaths are parts of circles or line segments;
0 < ε < R and x1 , x2, y1 , y2 are positive reals.)

12. Let S be a subset of C. A point z ∈ C is a boundary point of S if z is a limit point of
S and also a limit point of the complement C \ S. The boundary ∂S of S is the set of
all boundary points of S. In the following cases, describe ∂S and state whether ∂S is
path-connected. Draw a picture in each case.
(i) S = {z ∈ C : 1 < |z| < 2}
(ii) S = {z ∈ C : z ±= 0}
(iii) S = {z ∈ C : z = x+ iywhere x, y ∈ Q}
(iv) S = {z ∈ C : 0 ≤ re z ≤ 1, 0 ≤ z ≤ 1}
(v) S = the intersection of the sets S in (iii) and (iv)
(vi) S = {z ∈ C : z ±= iywhere y ∈ R, y ≤ 0}
(vii) S = the intersection of the sets S in (vi) and (ii)
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Figure 2.28 Six paths in C: write down formulas for them.

Figure 2.29 Why can paths like this not be used to construct a space-filling curve?

13. In the following cases the boundary of S (see Exercise 12) can be described as the
image of a path. Draw a picture of S and specify a function γ giving such a path.
(i) S = {z ∈ C : |z| ≤ 1, im z ≥ 0}

(ii) S = {z ∈ C : 1 ≤ |z| ≤ 2, im z ≥ 0}

(iii) S = {z ∈ C : 0 ≤ re z ≤ 1, 0 ≤ im z ≤ 1}

(iv) S = {z ∈ C : 1 ≤ |z| ≤ 2, 0 ≤ im z ≤ re z}

14. In the construction of a space-filling curve in Section 2.9, why can we not just take
γn to be a path that zigzags n times acrossU2 , as in Figure 2.29? Justify your answer.

15. Let U3 be the unit cube in R3 . Show that there exists a continuous map from [0, 1]
ontoU3 . (Hint: the hard way is to construct paths with similar properties to those in
Section 2.9. The easy way is to observe that U3 = U2 × [0, 1]. Map [0, 1] × [0, 1]
onto U2 × [0, 1]; then compose with γ : [0, 1]→ [0, 1]× [0, 1].)



58 Topology of the Complex Plane

16. Let Un be the unit hypercube in Rn. Show that there exists a continuous map from
[0, 1] onto Un .

17. Let m,n > 0 be integers. Prove that there exists a continuous map from Um onto

Un, even when m < n.

18. If γn is a sequence of step paths in U2, can the union of their tracks equal U (rather

than just being dense in U2)? Prove your answer correct.
19. Does there exist a continuous map γ : [0, 1]→ U

2 that is one-one as well as onto?
Justify your answer.



3 Power Series

Many of the more important functions studied in real analysis, such as the exponen-
tial and trigonometric functions, are most conveniently defined using power series. The
familiar power series for the sine and cosine go back at least to around 1400 with the
work of Madhava of Sangamagra, whose discovery of these series was reported in the
1501 Yuktibhasa of Jyesthadeva. This book also included Gregory’s series

tan
−1

x = x−
x3

3
+

x5

5
−

x7

7
+ · · ·

for the inverse tangent function:

The first term is the product of the given sine and radius of the desired arc divided by the cosine
of the arc. The succeeding terms are obtained by a process of iteration when the first term is
repeatedly multiplied by the square of the sine and divided by the square of the cosine. All the
terms are then divided by the odd numbers 1, 3, 5, . . . . The arc is obtained by adding and
subtracting respectively the terms of odd rank and those of even rank.

Both Madhava and Jyesthadeva were members of the Kerala school of Indian mathe-
matics. The series were rediscovered in the West in 1676, when Newton stated them in
a letter to Henry Oldenburg, Secretary of the Royal Society. They were derived again
by Abraham de Moivre in 1698, by James Bernoulli in 1702, and were widely used by
Euler in the 1730s.
Power series are, if anything, even more important when we move from real to com-

plex functions. In the 1820s Cauchy made considerable use of power series
∑

anz
n of a

complex variable z. In particular, any real function having a power series development
automatically gives rise to a complex function with the corresponding power series. This
provides a natural method for extending real functions to the complex case. In the 1840s
Weierstrass showed how to base the theory of complex functions on power series.
In this chapter we develop some elementary properties of sequences and series of

complex numbers, mostly by direct analogy with the real case, and then specialise to a
deeper study of power series.

3.1 Sequences

For our purposes, sequences are required only as a stepping-stone towards series. A
(complex) sequence is a function

f : N→ C
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where as usual N denotes the natural numbers {0, 1, 2, . . . }. It is convenient to write

zn = f (n)

and to arrange the numbers zn, called the terms of the sequence, in order as

z0, z1, z2 , . . . , zn, . . .

Alternative notation
(zn) (n ≥ 0)

or just
(zn)

are often used for brevity, and it is sometimes helpful to start the sequence at 1 instead
of 0, like this:

z1, z2, z3 , . . . , zn, . . .

Now the corresponding f maps N \ {0} to C.

DEFIN IT ION 3.1. A sequence (zn) tends to the limit z as n tends to∞ if, given any real
ε > 0, there exists a natural number N(ε) such that

n > N(ε) implies |zn − z| < ε

A sequence that tends to a limit is convergent.

This definition is identical to the usual one for real numbers, except that z, zn may be
complex, and the absolute value is as defined for C.
We write

lim
n→∞

zn = z

or

zn→ z as n→ ∞

The geometric content of this definition is that for sufficiently large n, all terms zn lie

inside arbitrarily small discs centred on z, as in Figure 3.1. This again is reminiscent of
the real case.

Figure 3.1 A complex sequence converging to a limit.
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The problem of finding limits of sequences of complex numbers can be reduced
directly to the real case:

LEMMA 3.2. Let (zn) be a sequence of complex numbers, with zn = xn + iyn , (xn, yn ∈
R). Let z = x + iy (x, y,∈ R). Then

lim
n→∞

zn = z

if and only if
lim
n→∞

xn = x and lim
n→∞

yn = y

Proof. Suppose that limn→∞ zn = z, and let ε > 0. There exists N ∈ N such that
|zn − z| < ε if n > N. For any w = u+ iv we have

|u| ≤
±
u2 + v2 = |w| |v| ≤

±
u2 + v2 = |w|

Therefore, taking w = zn − z, for all n> N we have

|xn − x| ≤ |zn − z| < ε
|yn − y| ≤ |zn − z| < ε

so xn → x and yn → y.

Conversely, suppose that xn → x and yn → y. Given ε > 0 there existM,N ∈ N such
that

|xm − x| ≤ ε/2 for all m ≥ M

|yn − y| ≤ ε/2 for all n ≥ N

Let R = max(M, N). Ifm > R then

|zn − z| ≤ |xn − x| + |yn − y| ≤ ε/2+ ε/2 = ε

so zn → z.

Since (xn) and (yn) are real sequences, their limits x and y are also real and can be
found using the techniques of real analysis.

Example 3.3. Let zn = (n+ in2 + 1)−1. Does zn converge? If so, to what?
Separate zn into real and imaginary parts, thus:

zn = (n+ in2 + 1)−1

= (n+ 1)[(n+ 1)
2
+ n

4
]
−1
− in

2
[(n+ 1)

2
+ n

4
]

using (1.8) of Chapter 1. Then

xn =
n+ 1

(n+ 1)2 + n4
→ 0 as n→ ∞

yn =
−n2

(n+ 1)2 + n4
→ 0 as n→ ∞

so

zn→ 0+ i · 0 = 0
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A similar idea gives the complex version of the General Principle of Convergence:

THEOREM 3.4 (General Principle of Convergence). A sequence (zn) tends to a limit z
as n→ ∞ if and only if for all ε > 0 there exists N(ε) ∈ N such that

m, n> N implies |zm − zn| < ε (3.1)

Proof. First, let zn → z. Then there exists N = N(ε) such that |zn − z| < ε/2 for all
n > N. If m,n > N then

|zm − zn| < |zm − z| + |z− zn| < ε/2+ ε/2 = ε

so (3.1) holds.
Conversely, assume (3.1) holds. Let xn = re(zn), yn = im(zn). If m,n > N then

|xm − xn| ≤ |zm − zn| < ε
|ym − yn| ≤ |zm − zn| < ε

By the General Principle of Convergence for real sequences (that is, the same statement
for a real sequence using the real absolute value), it follows that xn → x and yn→ y for

some x, y ∈ R. By Lemma 3.2, zn → z = x+ iy.

Example 3.5. Use the General Principle of Convergence to show that the sequence
defined by

zn = i
√
2+

²
3− 4i
6

³n

converges.

Compute

|zm − zn| =
´́
´́
²
3− 4i
6

³m

−
²
3− 4i
6

³n ´́
´́

≤
´́
´́
²
3− 4i
6

³m´́
´́ +

´́
´́
²
3− 4i
6

³n ´́
´́

=
²
5

6

³m

+
²
5

6

³n

≤ 2 ·
²
5

6

³r

where r = min(m,n). Since 56 < 1 we can make this less than any given ε > 0 by taking
r large enough.
Note that trying to tackle this question using Lemma 3.2 directly does not work

out very easily, although the intrepid reader who converts (3 − 4i)/6 into polar coor-
dinates stands a better chance). It may of course be shown from the definition that
zn → i

√
2.
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3.2 Series

Given a sequence (zn), we can form another sequence of partial sums defined by

sr =

nµ

r=0

zr = z0 + z1 + · · · + zn

If sn tends to a limit s ∈ C, we define
∞µ

r=0

zr = s = lim
n→∞

sn

and say that the series
∞µ

r=0

zr

converges to s.
A series that converges to some s is said to be convergent. We often also write

s = z0 + z1+ z2 + · · ·

when convenient, but note that this is a definition of the + · · · notation, since infinite
additions do not have any meaning until we give them one.
A series that is not convergent is called divergent.
By way of this definition, any question about the convergence of a series can be

turned into one about the corresponding sequence (sn) of partial sums. For example,
Theorem 3.4 applied to (sn) yields:

LEMMA 3.6. A series
∑
∞

r=0 zr converges if and only if, for all ε > 0, there exists
N(ε) ∈ N such that

m, n> N(ε) implies

´́
´́
´́

nµ

r=m+1

zr

´́
´́
´́ < ε

Proof. Observe that
∑n

r=m+1 zr = sn − sm . Now use Theorem 3.4.

We can replace m+ 1 by m here, by working with N + 1 if necessary. This is usually
more convenient.

COROLLARY 3.7. If
∑∞

r=0 zr converges then zr → 0 as r→ ∞.

Example 3.8. Let

zn =

²
3− 4i

6

³n

Does
∑∞

r=0 zr converge?

We have ´́
´́
´

nµ

r=m

²
3− 4i

6

³r ´́´́
´ ≤

nµ

r=m

´́
´́
²
3− 4i

6

³r´́
´́

=

nµ

r=m

²
5

6

³r
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This series is a (finite) geometric series, whose sum is known to be
¶²
5

6

³m
−

²
5

6

³n+1·²
1−

5

6

³−1

which obviously may be made less than any required ε > 0 by taking m,n large enough.

WARNING 3.9. There is an ancient, venerable, and politically incorrect joke about two
country yokels who each buy horses and want to be sure which is which. So they cut the
tail off one. Next day, someone has cut the tail off the other. So they try again with an
ear . . .with the same result. Finally, in desperation, one says to the other ‘Tell you what:
you take the black one and I’ll take the white one.’
For some reason, many students become confused between sequences and series.

There is no reason to fall into this trap, because:

series are the ones that begin with
∞µ

r=0

This does not eliminate all sources of confusion, but it’s a good start.

As with sequences, it is sometimes preferable to start at 1 rather than 0. The series
then takes the form

∞µ

r=1

zr

or

z1 + z2 + z3 + · · ·

whose precise definition is left to the reader. Variations, such as
∞µ

r=3

zr

are also feasible. However, this is no more than
∑
∞

r=0 zr where we set z0 = z1 = z2 = 0.

To simplify notation, we often abbreviate such sums to
µ

zr

when the limits of summation are clear.
The summation of complex series may, if desired, be reduced to equivalent real series.

Applying Lemma 3.2 to the partial sums, we obtain an immediate proof of:

LEMMA 3.10. Let zr = xr + iyr where xr, yr ∈ R. Then
∑

zr converges if and only if
both real series

∑
yr and

∑
yr converge. If so,
µ

zr =
µ

xr+ i
µ

yr
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Example 3.11. 11 Let zn = (i)n/n2. Does
∑

zr converge?

We have

xn =

¸
0 if n is odd
(−1)n/2/n2 if n is even

Ignoring the zero terms,
∑

xn is an alternating series (its terms are alternately positive
and negative) whose terms tend to zero, so it converges.
Similarly, yn = im(zn) yields a convergent alternating series. Hence

∑
zr converges.

In the same manner, considering real and imaginary parts, or by mimicking the usual
proof for real series, we get:

LEMMA 3.12. Let
∑

ar and
∑

br be convergent series, and let c be a complex number.
Then

µ
(ar + br) =

µ
ar +

µ
br

µ
car =c

µ
ar

When verifying that a complex series converges without computing its actual sum, it
is often better to concentrate on the modulus rather than the real and imaginary parts.
By analogy with the real case, we introduce:

DEFIN IT ION 3.13. A series
∑

zr is absolutely convergent if and only if the series∑
|zr| is convergent.

THEOREM 3.14. An absolutely convergent series is convergent.

Proof. Let
∑

zr be absolutely convergent and let zr = xr + iyr. Then |xr | ≤ |zr| and
|yr | ≤ |zr |. But

∑
|zr| is convergent, so by the comparison test for real convergence,∑

|xr| and
∑
|yr | are convergent. Since absolute convergence implores convergence in

the real case,
∑

xr and
∑

yr are convergent. The result follows by Lemma 3.10.

Example 3.15.
∑

zn =
∑

(in/n2) converges because
∑
|zn| =

∑
(1/n2) converges.

(Compare this proof with the previous example.)

Theorem 3.14 is useful; because it lets us verify convergence of many complex series∑
zr by reference to the real series

∑
|zr |. Since the latter has positive terms there is a

complex version of:

THEOREM 3.16 (Comparison Test). Let
∑

ar and
∑

br be complex series, with
∑

ar

absolutely convergent. If
|br| < K|ar | (r > N)

for some positive K and integer N, then
∑

br is absolutely convergent, hence convergent.
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There is also a complex version of:

THEOREM 3.17 (Ratio Test). Let
∑

ar be a complex series with non-zero terms such
that

lim
r→∞

|ar |

|ar − 1|
= λ

If λ < 1, the series
∑

ar is absolutely convergent. If λ > 1, the series is divergent. If
λ = 1, it may be convergent or divergent.

Proof. For λ < 1, let ρ = 1
2 (λ + 1). Then λ < ρ < 1 and there exists N such that

|ar|/|ar−1| < ρ (r > N)

Hence

|ar| < ρ|ar−1| < ρ2|ar−2| < · · · < ρr−N|aN| (r > N)

and
∑

ar converges by comparison with
∑
ρr for real ρ < 1.

In the case λ > 1, we see that for some N

|ar |/|ar−1| > 1 (r > N)

By Corollary 3.7,
∑

ar cannot converge because the terms ar do not tend to zero.
The final case λ = 1 applies to

∑
1/r and

∑
1/r2 . The first diverges, the second

converges. So both possibilities may occur.

3.3 Power Series

We can now give a formal introduction to one of the central ideas in complex analysis:

DEFIN IT ION 3.18. Let z0 ∈ C. A series of the form
∞µ

n=0

an(z − z0)
n

(3.2)

with coefficients an ∈ C is a power series about z0 .

By the change of variable z± = z−z0 we can usually reduce properties of power series
to the case z0 = 0. Here, convergence is governed by the following results:

THEOREM 3.19. (i) If a power series
∑

anz
n converges for z = z1 ²= 0, then it

converges absolutely for all z with |z| < |z1|.
(ii) If a power series

∑
anz

n diverges for z = z2, then it diverges for all z with |z| > |z2|.

Proof. (i) If a power series
∑

anz
n converges then |anzn| → 0 as n → ∞, by Corol-

lary 3.7. Thus there exists K ∈ R such that |anzn| < K for all n. If |z| < |z1| then

q = |z/z1| < 1. Now

|anz
n| = |anzn1||z/z1|

n < Kqn

so by the comparison test,
∑
|anz

n| converges.
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(ii) If |z|> |z2| and
∑

anz
n converges then by (i),

∑
anz

n
2 also converges, a contradic-

tion. So
∑

anz
n diverges.

These results lead to an important concept:

DEFIN IT ION 3.20. Let

R = sup{|z| : there exists z such that |anzn| converges}

(allowing R = ∞ if no real supremum exists) then it follows at once that
µ

anz
n

¸
converges for |z| < R

diverges for |z| > R

(We cannot yet say what happens for |z| = R.) We define R to be the radius of
convergence of the series, and the set

{z ∈ C : |z| < R}

is the disc of convergence, classically often called the circle of convergence because

geometrically it is the interior of a circle centred at the origin. In extreme cases this may

be just the origin when R = 0, or the whole of C when R = ∞.

In the general case (3.2) where z0 is arbitrary, we apply the same definition with z

replaced by z± = z− z0 . Now the conditions
µ

an(z − z0)
n

¸
converges for |z − z0| < R

diverges for |z − z0| > R

determine the radius of convergence R, and the disc of convergence is

{z ∈ C : |z − z0| < R}

Example 3.21. The series 1+ z+z2+· · · is convergent for |z| < 1, since it is absolutely
convergent in that case. It diverges for z = 1 and hence for all z with |z| > 1. Therefore
its radius of convergence is 1.

When |ar|/|ar−1| tends to a limit as r tends to infinity, the radius of convergence can
be computed as follows. Let

lim
r→∞

|ar|

|ar−1|
= l

(which is positive or zero). Then

lim
r→∞

|arz
r |

|ar−1zr−1|
= l|z|

By the ratio test, for l > 0 the series is convergent for l|z| < 1 and divergent for l|z| > 1.

Hence the radius of convergence is 1/l. Put another way, the radius of convergence of∑
arz

r is

lim
r→∞

|ar−1|

|ar|

provided this limit exists. If l = 0 then the radius of convergence is∞.
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Example 3.22. If an = 1/n so
∑

anz
n =
∑

zn/n, then

lim
r→∞

|ar−1|

|ar|
= 1

so the radius of convergence is 1.

In general, the ratio |ar|/|ar−1| may not tend to a limit. Sometimes it is possible
to spot the radius of convergence by native wit, but when all else fails we can use a
powerful technique that works in all cases:

THEOREM 3.23. The radius of convergence of
∑

anz
n is given by

1/R = lim sup |an|1/n (3.3)

Proof. Define R using (3.3).
Suppose first that |z| < R. Then we can choose ρ such that |z| < ρ < R. By the

definition of lim sup, we have 1/ρ > |an|1/n for all n larger than some N. Hence |an| <
1/ρn , so

|anz
n
| = |anρn| · |z/ρ|n < |z/ρ|n

Now |z/ρ| < 1 so
∑
∞
n=N |z/ρ|

n converges. By the comparison test,
∑
∞
n=N anz

n

converges, so
∑
∞
n=0 anz

n converges.

Next suppose that |z| > R. Choose ρ such that |z| > ρ > R. Then 1/ρ < |an|1/n for

all n larger than some N. By comparison with
∑
|z/ρ |n,

∑∞
n=N anz

n diverges.

Example 3.24. The series
µ

(−1)
n z

n

n

has radius of convergence R, where

1/R = lim sup(1/n)1/n = 1

so R = 1. The series converges for |z| < 1 and diverges for |z| > 1. When |z| = 1

further analysis is required, for which we do not yet have the technique.
The series

∑ zn

n!
has radius of convergence R, where

1/R = lim sup(1/n!)1/n = 0

Therefore R = ∞ and the series is absolutely convergent for all z ∈ C.
The series

µ
(−1)n

z2n

2n!

µ
(−1)n

z2n+1

(2n+ 1)!

similarly have R = ∞, so they are absolutely convergent for all z ∈ C.
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In the next chapter we use the last three power series above to define the complex

exponential, cosine, and sine functions. In order to derive some of their basic properties,
we will use a theorem on the multiplication of power series. Roughly, this says that if
we multiply them ‘term by term’ and collect terms in the right way, we get a series
converging to the product. More precisely:

THEOREM 3.25. Suppose that
∑

an and
∑

bn are absolutely convergent, with sums
a,b respectively. Let

cr = a0br + a1br−1+ · · · + arb0 (3.4)

Then
∑

cn is convergent, and its sum is ab.

Proof. This is a direct extension of the corresponding result in real analysis. For readers
unfamiliar with this theorem, we give details in Section 3.5.

3.4 Manipulating Power Series

The results derived so far let us calculate with power series ‘as if they are infinite poly-
nomials’, provided they are absolutely convergent. To see this, let

∑
anz

n and
∑

bnz
n

be power series with radii of convergence Ra ,Rb respectively. Let |z| < min(Ra, Rb). By
Lemma 3.12,

µ
anz

n +
µ

bnz
n =
µ

(an + bn)z
n

By Theorem 3.25,
¹µ

anz
n
º ¹µ

bnz
n
º
=
µ

cnz
n

where cr is defined by (3.4). If we replace the infinite sum by a finite one,
∑n

1 , these
formulas become the usual ones for addition and multiplication of polynomials.

It is this feature that makes power series so useful: we can calculate with them
relatively easily. In fact, we can use familiar algebraic methods.

We take advantage of this to exhibit some important features of the complex

exponential and trigonometric functions.

DEFIN IT ION 3.26. The complex exponential and trigonometric functions are defined
by three power series:

exp z =
µ zn

n!

cosz =
µ

(−1)n
z2n

(2n)!

sin z =
µ

(−1)
n z2n+1

(2n+ 1)!

These series are motivated by the corresponding real series. They are absolutely
convergent for all z ∈ C by Example 3.24.
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We begin with the expression cos θ + i sin θ of Section 1.7. Adding the power series,
we obtain

cos θ + i sin θ =
µ

crθ
r

where

cr =
(−1)r/2

r!
if r is even

cr =
i(−1)(r−1)/2

r!
if r is odd

Now i2 = −1, i3 = −i, i4 = 1, so

ir = (−1)r/2 if r is even
ir = i(−1)(r−1)/2 if r is odd

Hence

µ
crθ

r
=
µ irθr

r!
= exp iθ

We thus have the important formula

cos θ + i sin θ = exp iθ

Therefore the polar coordinate form z = r(cos θ + i sin θ) for a complex number z can

be written as z = r · exp iθ , or more briefly as reiθ . (We define powers za of complex

numbers in Section 7.3, and this will justify the notation exp iθ = eiθ .)

Next, we apply the formula for the product of two power series to evaluate

exp z · exp w

where z,w ∈ C. We obtain

exp z · expw =

²µ
z
n

n!

³ ²µ
w
n

n!

³

=

∞µ

n=0

»
nµ

r=0

1

r!

1

(n− r!)
z
r
w
n−r

¼

=

∞µ

n=0

1

n!

»
nµ

r=0

²
n

r

³
z
r
w
n−r

¼

By the Binomial Theorem this is
∞µ

n=0

1

n!
(z+ w)

n
= exp(z+ w)

This proves

exp z · expw = exp(z + w)
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3.5 Products of Series

We sketch a proof of Theorem 3.25 above: if
∑

an and
∑

bn are absolutely convergent,
with sums a,b respectively, then ab =

∑
cn, where

cr = a0br + a1br−1+ · · · + arb0

The proof may be easier to follow using Figure 3.2, which represents all possi-
ble cross-products asbt on a square grid. The idea is that partial sum of

∑
cn is the

sum of terms in a triangular region like the one shown in light shading. In contrast,
products of partial sums of

∑
anz

n and
∑

bnz
n correspond to terms in a rectangle,

such as the one shown in dark shading. Our main task is to estimate the sum of
terms in suitable triangular regions by approximation them by rectangles. Here are the
details.

Let
∑
|an| = A,

∑
|bn| = B. Given ε > 0 we can choose N large enough so that all

of the following conditions hold. (To do this, choose an N for each condition and take
the maximum of the three Ns chosen.)

(i)

´́
´́
´

»
Nµ

n=0

an

¼ »
Nµ

n=0

bn

¼
− ab

´́
´́
´ <

ε

A+ B+ 1

(ii)

2Nµ

n=N+1

|an| <
ε

A + B + 1

(iii)

2Nµ

n=N+1

|bn| <
ε

A + B + 1

Figure 3.2 Terms of
∑

anz
n ,
∑

bnz
n, and their product.
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Then
´́
´́
´

2Nµ

n=0

cn − ab

´́
´́
´ ≤

´́
´́
´

2Nµ

n=0

cn −

»
Nµ

n=0

an

¼ »
Nµ

n=0

bn

¼´́
´́
´ +

´́
´́
´

»
Nµ

n=0

an

¼ »
Nµ

n=0

bn

¼
− ab

´́
´́
´

which from Figure 3.2 is less than or equal to
⎛

⎝
2Nµ

n=N+1

|an|

⎞

⎠
»

Nµ

n=0

|bn|

¼
+

»
Nµ

n=0

|an|

¼⎛

⎝
2Nµ

n=N+1

|bn|

⎞

⎠+ ε

A + B + 1

<
εB

A + B + 1
+

εA

A + B + 1
+

ε

A + B+ 1
= ε

Therefore
∑

cn converges to ab.

3.6 Exercises

1. Determine whether the following sequences converge, and find the limits of those
that converge.
(i) ((1+ i)n)

(ii) ((1+ i)n/n)

(iii) ((1+ i)n/n!)

(iv) (1/(1+ i)n)

(v) (n/(1+ i)n)

(vi) (n!/(1+ i)n)

2. For what values of z ∈ C does each of the following sequences converge?
(i) (zn)
(ii) (zn/n)
(iii) (n!zn)
(iv) (zn/n!)
(v) (zn/nk) where k is a positive integer.
(vi) (a(a− 1) · · · (a− n+ 1)zn/n!) where a is a fixed complex number.

3. Let a ∈ R have decimal expansion

a= a0 .a1a2 . . . an . . .

where each an is an integer and 0 ≤ ai ≤ 9 for n ≥ 1. Find all values of a for which
the sequence (an) converges.

4. Let zn = 1
2
(in + (−i)n). Write down the first few terms of the sequence (zn). Derive

similar expressions for the nth terms of the sequences that begin as follows:
(i) 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, . . .
(ii) 1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, . . .
(iii) 1, 0,− 1

2
, 0, 1

3
, 0,− 1

4
, 0, . . .

(iv) 1, 0, 112 , 0,
2
3 , 0, 1

1
4 , 0,

4
5 , 0, 1

1
6 , 0, . . .
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5. Let (un) be a convergent sequence in C. Let vn = (
∑n

r=1 ur)/n. By writing vn =
v±n+ v±±n where

v
±
n =

1

n

⎛

⎝
µ

r≤
√
n

ur

⎞

⎠ v
±±
n =

1

n

⎛

⎝
µ

√
n<r≤n

ur

⎞

⎠

show that (vn) converges to the same limit as (un).
6. Find the radius of convergence of the following series:

(i)
∑

z
n/n

(ii)
∑

zn/n!
(iii)
∑

n!zn
(iv)
∑

n
k
z
n where k is a positive integer.

(v)
∑

z
n!

7. The 0th order Bessel function J0(z) is defined by the power series

J0(z) =
∞µ

n=0
(−1)n 1

(n!)2
z
n

2n

Find its radius of convergence.
8. Find the radius of convergence of the following series:

(i) z−
z
3

3! +
z
5

5! −
z
7

7! + · · ·

(ii) 1−
z2

2!
+

z4

4!
−

z6

6!
+ · · ·

(iii) z−
z2

2
+

z3

3
−

z4

4
+ · · ·

(iv) 1+ az+
a(a− 1)

2!
z
2 + · · · +

a(a− 1) · · · (a− n+ 1)

n!
z
n + · · · where a ∈ C.

(Note that in part (iv) the radius of convergence may differ for different values of a.)
9. Show that

∑∞
n=1 z

n! converges for |z| < 1, but diverges for infinitely many z with

|z| = 1.

10. Suppose that
∑

anz
n has radius of convergence R and let C be the circle {z ∈ C :

|z| = R}. Prove or disprove the following (which may or may not be true):
(i) If

∑
anz

n converges at some point on C then it converges everywhere onC.
(ii) If

∑
anz

n converges absolutely at some point on C then it converges absolutely
everywhere on C.

(iii) If
∑

anz
n converges at every point on C, except possibly one, then it converges

absolutely everywhere on C.

(Hint: the series
∑

zn/n could prove useful in this question.)
11. If

∑
anz

n has radius of convergence R, use the formula 1/R = lim sup |an|1/n to

find the radius of convergence of:
(i)
∑

n
3
anz

n

(ii)
∑

anz
3n

(iii)
∑

a3nz
n
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12. Prove that if each of the series
∑

anz
n ,
∑

bnz
n , and

∑
anbnz

n has radius of
convergence equal to 1, then so have the series

∑
anb

2
nz

n and
∑

a2nbnz
n.

13. For |an| ≤ 1, show that
∑

anz
n is absolute convergent for all |z| < 1. If

∑
anz

n =

f (z) for |an| < 1, |z| < 1, show that

| f (z)| ≤
1

1− |z|
14. Prove that, for z ²= 1,

kµ

n=1

zn

n
=

z

1− z

»
k−1µ

n=1

1

n(n+ 1)
−

k−1µ

n=1

zn

n(n+ 1)
+

1− zk

k

¼

Show that the series
∑∞

n=1 z
n/n and

∑∞
n=1 z

n/(n(n+1)) have radius of convergence
1; that the latter series converges everywhere on |z| = 1, while the former series
converges everywhere on |z| = 1 except z = 1.

15. Suppose that the power series
∑∞

n=0 anz
n has a recurring sequence of coefficients;

that is, an+k = an for some fixed positive integer k and all n. Prove that the series
converges for |z| < 1 to a rational function p(z)/q(z) where p, q are polynomials,

and that the roots of q are all on the unit circle.
What happens if an+k = an/k instead?
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The derivative of a real function is defined by a limiting process, which generalises
without difficulty to complex functions now that we have developed the necessary con-
cept of a limit. There are few surprises in this chapter: the results on differentiation of
sums, products, composites of functions, and power series parallel the real case – and
even the proofs are essentially unchanged. One minor surprise is that the condition of
differentiability implies certain relations between the real and imaginary parts of a com-

plex function, specified by the Cauchy–Riemann Equations. We apply these equations
immediately to prove that a function on a domain has zero derivative, it must be constant.
While the result is analogous to the real case, the proof is not. The idea of differentiation
can also be extended to hybrid functions R→ C and C→ R, still without surprises.
To counter the impression that all the results of real analysis go through without

change to the complex case, the final section previews a dramatic difference between
the two theories: every differentiable complex function can be differentiated arbitrarily
many times.

4.1 Basic Results

By analogy with the real case we state:

DEFIN IT ION 4.1. (a) A complex function f defined on an open set S is differentiable

at z0 ∈ S if

lim
z→z0

f (z) − f (z0)

z − z0

exists.

(b) The value of this limit is then defined to be the derivative f ±(z0) at that point.
(c) If f is differentiable at every z0 ∈ S then f is differentiable. In this case the derivative

can also be considered as a function f ± : S→ C.

(d) If f ±(z) is also differentiable, we define the second derivative to be

f
±±
(z) = lim

z→z0

f ±(z) − f ±(z0)

z − z0

(e) Repeating this process we obtain the usual notion of higher derivatives f ±±(z0),

f ±±±(z0) , . . . , f (n)(z0) at z0.
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Example 4.2. Suppose f (z) = z2. Then

lim
z→z0

f (z) − f (z0)

z − z0
= lim

z→z0

z2 − z20

z− z0
= 2z0

Hence f ±(z0) = 2z0 for all z0 ∈ C. Similarly f ±±(z0) = 2 and f (n)(z0) = 0 for all
n ≥ 3.

Several alternative notations are used of differentiation, the two most popular being
Df (z) or df (z)/dz in place of f ±(z). The second derivatives are then denoted by D2f (z)

and d2f (z)/dz2 respectively. Sometimes (especially in classical texts) f (z) is denoted by
w and its derivative by dw/dz. In this text we use the notation f ±(z) because, when we
think of the derivative as a function in its own right, we can then denote it by f ±. The
same goes for higher derivatives f ±± and so on.
In many ways, results about complex differentiation follow naturally by analogy with

the real case, as the next few results illustrate.

PROPOSIT ION 4.3. If f is differentiable at z0 , then f is continuous at z0.

Proof.

lim
z→z0

f (z)− f (z0) = lim
z→z0

f (z)− f (z0)

z− z0
(z− z0) = f ±(z0) · 0= 0

Thus differentiability at z0 implies that

lim
z→z0

f (z) = f (z0)

which is one formulation of continuity.

Recall from Section 2.3 that the sum f +g, difference f −g, product f · g, and quotient
f /g of two functions f : S→ C,g : S→ C are defined in the usual manner:

( f + g)(z) = f (z)+ g(z) (z ∈ S)

( f − g)(z) = f (z)− g(z) (z ∈ S)

( f · g)(z) = f (z)g(z) (z ∈ S)

( f/g)(z) = f (z)/g(z) (z ∈ S,g(z) ²= 0)

We obtain the expected rules for differentiation of these combinations:

PROPOSIT ION 4.4. If f and g are differentiable at z0 , then so are f +g, f −g, f · g, and
f /g (in the latter case, provided that g(z0) ²= 0). The derivatives are:

(i) ( f + g)± = f ± + g±

(ii) ( f − g)± = f ± − g±

(iii) ( f · g)± = f · g± + f ± · g

(iv) ( f /g)± = ( f ±g− fg±)/(g2)

Proof. The computations are analogous to the real case. As an example, we prove (iii):
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( f · g)±(z0) = lim
z→z0

f (z)g(z) − f (z0)g(z0)

z− z0

= lim
z→z0

f (z)g(z) − f (z)g(z0) + f (z)g(z0)− f (z0)g(z0)

z− z0

= lim
z→z0

f (z) lim
z→z0

g(z) − g(z0)

z − z0
+ g(z0) lim

z→z0

f (z) − f (z0)

z − z0

using the algebra of limits, which equals

f (z0)g
±(z0)+ f ±(z0)g(z0)

because Proposition 4.3 implies that f is continuous at z0.
Parts (i, ii, iv) can be proved by similar methods.

COROLLARY 4.5. (i) Let

p(z) = a0 + a1z+ · · · + anz
n

be a polynomial with complex coefficients ar . Then its derivative is

p
±
(z) = a1 + 2a2z + · · · + nanz

n−1

(ii) Let p(z), q(z) be polynomials over C. Then

d

dz

p(z)

q(z)
=

p±(z)q(z) − p(z)q±(z)

q(z)2

whenever q(z) ²= 0.

Proof. We prove by induction that
d

dz
z
n
= nz

n−1
(4.1)

Everything else then follows from Proposition 4.4.
Clearly (4.1) is valid for n = 0. When n= 1, let f (z) = z. Then

f
±
(z0) = lim

z→z0

z− z0

z− z0
= 1

and again (4.1) holds. For the induction step, part (ii) of Proposition 4.4 yields:

d

dz
zn+1 =

d

dz
(zn · z) = nzn−1 · z+ zn · 1= (n+ 1)zn

As usual, we denote the composition of f : S → C and g : T → C, where f (S) ⊆ T ,

by g ◦ f :

g ◦ f (z) = g( f (z))

We then obtain:

PROPOSIT ION 4.6 (Chain Rule). If f is differentiable at z0 and g is differentiable at
f (z0), then g ◦ f is differentiable at z0 and

(g ◦ f )±(z0) = g±( f (z0))f
±(z0)
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Before giving a proof, consider a common attempt to prove the chain rule, by writing
g( f (z))− g( f (z0))

z− z0
=

g( f (z))− g( f (z0))

f (z)− f (z0)

f (z)− f (z0)

z− z0
(4.2)

provided that f (z) ²= f (z0). Since f is differentiable at z0 it is continuous there, so z→ z0

implies f (z)→ f (z0), giving

lim
z→z0

g( f (z)) − g( f (z0))

f (z) − f (z0)
= g±( f (z0))

Letting z→ z0 in (3.1) then gives (g ◦ f )±(z0) = g±( f (z0))f
±(z0) as required.

Unfortunately this attempt has a nasty gap, because f (z)− f (z0) could be zero. If we
knew it was non-zero in some neighbourhood of z0 , excluding z = z0, we could work
in this neighbourhood and the proof would then be valid. In fact Theorem 10.16 below
shows that in the complex case such a neighbourhood always exists – an interesting
example of the extra simplicity of complex analysis. In the real case, no such theorem
holds.

However, the proof commonly used in the real case to patch up the gap in the
above attempt also works in the complex case, and is much more elementary than
Theorem 10.16. It goes like this:

Proof. Let u= f (z0). Define

h(w) =
g(w) − g(u)

w − u
− g

±
(u) if w ²= u

h(u) = 0

Clearly h is continuous and defined for all w sufficiently near u. Also, as z→ z0 we see
that h ◦ f (z) → h( f (z)) = h(u) = 0. Now, the definition of h, applied when w = f (z),

can be written in the shape

g( f (z))− g(u) = (h( f (z)) + g±(u))( f (z) − u)

when f (z) ²= u. But it is also obviously true when f (z) = u. Let z ²= z0 , divide by both
sides by z − z0, let z→ z0 . . . Voilà!

4.2 The Cauchy–Riemann Equations

Suppose that we write a complex function f in terms of two real functions u, v of two
real variables

f (z) = u(x, y) + iv(x, y)

where x + iy = z. We now prove that differentiability of f imposes two conditions on
the partial derivatives of u and v with respect to x and y. We use the notation

∂u

∂x
(x, y) = lim

h→0

u(x+ h, y)− u(x, y)

h

∂u

∂y
(x, y) = lim

k→0

u(x, y + k)− u(x, y)

k
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and abbreviate these to ∂u/∂x and ∂u/∂y when no confusion can occur. We can then
prove:

THEOREM 4.7 (Cauchy–Riemann Equations). If f is differentiable at z = x+ iy then
∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y all exist at (x, y), and

∂u

∂x
=

∂v

∂y

∂v

∂x
= −

∂u

∂y
(4.3)

Proof. We calculate f ±(z) in two different ways. First we take a point near z in the form
z+ h = (x+ h)+ iy, where h is real, and compute

f
±
(z) = lim

h→0

f (z+ h) − f (z)

h

= lim
h→0

u(x+ h, y) + iv(x+ h, y) − u(x, y) − iv(x, y)

h

= lim
h→0

u(x+ h, y) − u(x, y)

h
+ i lim

h→0

v(x+ h, y) − v(x, y)

h

=
∂u

∂x
+ i

∂v

∂x

Next we take a point near z in the form z = x+ i( y+ k), where k is real, and compute

f ±(z) = lim
k→0

u(x, y+ k) + iv(x, y+ k)− u(x, y)− iv(x, y)

h

=
∂v

∂y
− i

∂u

∂y

Now equate real and imaginary parts in the two expressions.

The equations (4.3) are called the Cauchy–Riemann Equations after Cauchy (1789–
1852) and Riemann (1826–1866). However, they were known to d’Alembert in 1752.
Observe that one equation has a minus sign but the other does not. This happens because
i2 = −1 and it is an important feature of the Cauchy–Riemann Equations. We can check
this using the simplest nonlinear complex function:

Example 4.8. Suppose that f (z) = z2 = (x2 − y2)+ 2ixy, so that

u(x, y) = x2 − y2 v(x, y) = 2xy

Then

∂u

∂x
= 2x

∂u

∂y
= −2y

∂v

∂x
= 2y

∂v

∂y
= 2x

and the Cauchy–Riemann Equations are valid.
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Example 4.9. The function f (z) = re z is continuous everywhere but differentiable
nowhere. In this case u(x, y) = x, v(x, y) = 0. So ∂u/∂x = 1,∂ v/∂y = 0, which are
never equal. Analogous real functions are much harder to find, see Section 4.6.

Example 4.10. The converse of Theorem 4.7 is false. Let

f (x+ iy) =

±
0 if one or both of x, y is zero
1 if neither of x, y is zero

For this function, the partial derivatives of u and v all exist at the origin and are zero,
so the Cauchy–Riemann Equations are certainly satisfied. But f is not continuous at the
origin, so it cannot be differentiable there.

Once again the introduction of real analysis creates complications. However, in this
case it is relatively easy to patch things up. It is rather like starting a well-tuned vintage
car on an icy morning. Once it is going, it will run smoothly, but getting it started can
take hard work. Complex analysis will prove to be a well-oiled machine, but taking
real analysis as a point of departure requires paying careful attention to the starting
conditions. If we do that, the machine runs well. But to verify this claim, we have to
take a very close look at the mechanics. We begin with a technical lemma.

LEMMA 4.11. If ∂u/∂x and ∂u/∂y exist at (x, y) and ∂u/∂x is continuous there, then

u(x+ h, y+ k)− u(x, y) = h

²
∂u

∂x
(x, y)+ ε(h, k)

³
+ k

²
∂u

∂y
(x, y) + η(h, k)

³

where ε(h, k),η(h, k)→ 0 as h, k→ 0.

Proof. Write u(x+ h, y+ k) − u(x, y) as

u(x+ h, y+ k) − u(x, y+ k) + u(x, y+ k) − u(x, y)

By the Mean Value Theorem for one real variable applied to φ(t) = u(x+ t, y+ k), there
exists θ with 0 < θ < 1 such that

u(x+ h, y + k)− u(x, y+ k) = h
∂u

∂x
(x+ θh, y+ k)

By continuity of ∂u/∂x,
∂u

∂x
(x+ θh, y+ k) −

∂u

∂x
(x, y) = ε(h, k)

where ε(h, k) → 0 as h, k→ 0. Hence

u(x+ h, y + k)− u(x, y+ k) = h

²
∂u

∂x
(x, y)+ ε(h, k)

³
(4.4)

More simply, k→ 0 implies

u(x, y+ k)− u(x, y)

k
→

∂u

∂y
(x, y)

Therefore if

η(h, k) =
u(x, y+ k) − u(x, y)

k
−
∂u

∂y
(x, y)



4.2 The Cauchy–Riemann Equations 81

then

u(x, y+ k) − u(x, y) = k

²
∂u

∂y
(x, y) + η(h, k)

³
(4.5)

where η(h, k) → 0 as h, k→ 0.

Adding (4.4) and (4.5) gives the required result.

By imposing extra continuity conditions on the partial derivatives of u and v we can
prove a converse to Theorem 4.7:

THEOREM 4.12. If f (z) = u(x, y)+ iv(x, y) is a complex function defined on an open set
S, and at some point z0 = x0 + iy0 the partial derivatives ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y
all exist, are continuous, and satisfy

∂u

∂x
= ∂v

∂y

∂v

∂x
= −∂u

∂y

then f is differentiable at z0.

Proof. Using Lemma 4.11, we can write

f (z)− f (z0) = u(x0 + h, y0 + k)+ iv(x0 + h, y0 + k) − u(x0 , y0) − iv(x0 , y0)

= h

²
∂u

∂x
+ ε1

³
+ k

²
∂u

∂y
+ η1

³
+ ih

²
∂v

∂x
+ ε2

³
+ ik

²
∂v

∂y
+ η2

³

where ε1 , ε2, η1,η2 → 0 as h, k→ 0.

By the Cauchy–Riemann Equations,

f (z) − f (z0) = (h+ ik)

²
∂u

∂x
+ i

∂v

∂x

³
+ hε1 + kη1 + hε2 + kη2

= (z− z0)

²
∂u

∂x
+ i

∂v

∂x

³
+ ρ

where ρ = hε1 + kη1 + hε2 + kη2 , so
f (z)− f (z0)

z− z0
=

∂u

∂x
+ i

∂v

∂x
+

ρ

z − z0

when z ²= z0. But
´́
´́ ρ

z− z0

´́
´́ =

|ρ|
√
h2 + k2

≤
|h||ε1| + |k||η1| + |h||ε2| + |k||η2|√

h2 + k2

≤ |ε1| + |η1| + |ε2| + |η2|

Let h, k→ 0. Then |ρ|/(z− z0)| → 0, so

lim
z→z0

f (z) − f (z0)

z− z0
=

∂u

∂x
+ i

∂ v

∂ x

as required.

Example 4.13. The function f (z) = |z|2 is differentiable at the origin and nowhere else,
since

u(x, y) = x
2 + y

2
v(x, y) = 0
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Hence ∂u/∂x = 2x, ∂u/∂y = 2y, ∂v/∂x = 0, ∂v/∂y = 0, and the Cauchy–Riemann

Equations are satisfied only at x = y = 0 at which point the partial derivatives are all
continuous.

4.3 Connected Sets and Differentiability

If f (z) = constant, then f ±(z) = 0, but what of the converse? When the derivative is zero,
does this imply that the function is constant? The answer is obviously ‘no’ for a function
defined on a disconnected set, But it is ‘yes’ when f is defined on a connected set. Recall
that a domain is defined to be a connected open set. We now prove:

THEOREM 4.14. If f is differentiable in a domain D and f ±(z) = 0 for all x ∈ D, then f
is constant on D.

Proof. By the proof of Theorem 4.7, f ±(z) = ∂u/∂x + i∂v/∂x = ∂v/∂y = 0− i∂u/∂y.

So f ±(z) = 0 implies that all four partial derivatives are zero.
From real analysis, if φ ± = 0 on a closed interval [a,b], then φ is constant on [a,b].
If L = {t + iy0 : t ∈ [a, b]} is a line segment in D, let φ(t) = u(t, y0). Then ∂u/∂x =

φ ± = 0 so u is constant on L. By a similar argument, u, v are both constant on any
horizontal or vertical line segment in D. Hence u, v are both constant on any step path in
D. But any two points in D can be connected by a step path, so f is constant on D.

The same technique proves:

PROPOSIT ION 4.15. If f is differentiable in a domain D and any one of re f , im f , or
| f | is constant, then f is constant.

Proof. If f = u+ iv and re f = u is constant, then ∂u/∂x = ∂u/∂y = 0. The Cauchy–
Riemann Equations then give ∂v/∂x = ∂v/∂y = 0, and by the argument of the previous
proof, f is constant on D. The case when im f is constant is similar.

If | f | is constant then u2 + v2 = c for some c ∈ C. If c = 0 then f = 0, so we may

assume c ²= 0. Differentiating,

2u
∂u

∂x
+ 2v

∂v

∂x
= 0

2u
∂u

∂y
+ 2v

∂v

∂y
= 0

and the Cauchy–Riemann Equations give

u
∂u

∂x
− v

∂u

∂y
= 0

u
∂u

∂y
+ v

∂u

∂x
= 0

Add u times the first equation to v times the second, to get

(u2 + v2)
∂u

∂ x
= 0
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Since u2 + v2 = c ²= 0 we have ∂u/∂x = 0. Similarly, the other partial derivatives of
u, v are zero, so u, v are real constants, and f is constant on D.

4.4 Hybrid Functions

At this point we briefly consider hybrid functions, by which we mean real-valued func-
tions of a complex variable or complex-valued functions of a real variable. There are
evident notions of differentiation in both cases. For instance, a real-valued function of a
complex variable f : D→ R whereD is an open subset ofCmay be regarded merely as
a complex function with imaginary part zero. Such a hybrid function is a very dull fel-
low, for if it is differentiable, its constant imaginary part implies that it must be constant,
by Proposition 4.15.
We fare a little better with complex-valued functions of a real variable. The most

interesting case is f : [a, b] → C, which (when continuous) is a path in the complex

plane. Define the derivative at t0 ∈ [a,b] to be

lim
t→t0

f (t)− f (t0)

t− t0

in the obvious way (and allowing appropriate one-sided limits at the end points a and b)

we obtain the expected generalisations of the usual properties of the derivative:

PROPOSIT ION 4.16. If f : [a, b] → C, g : [a,b] → C are differentiable at t ∈ [a,b],

then

( f ³ g)
±
(t) = f

±
(t) ³ g

±
(t)

( f · g)±(t) = f (t)g±(t)+ f ±(t)g(t)

( f /g)±(t) = ( f ±(t)g(t) − f (t)g±(t))/(g(t))2

The chain rule involving a complex function f of a real variable appears in two guises.
We may either precede it by a real function h, or follow it by a complex function g, to
obtain:

PROPOSIT ION 4.17. If h : [a,b]→ [c,d], f : [a,b] → D, and g : D →C, then

( f ◦ h)±(s) = f ±(h(s))h±(s)

(g ◦ f )±(t) = g±( f (t))f ±(t)

wherever the derivatives on the right-hand side of the equations are defined.

The proofs of Propositions 4.16 and 4.17 follow the same pattern as the real and
complex cases.
We end this section by characterising the geometric meaning of the derivative γ ± of a

smooth path γ when γ ± is non-zero.

PROPOSIT ION 4.18. If γ : [a, b] → C is a path and the derivative γ ±(t) exists and is
non-zero for some t ∈ [a,b] (including the possibility of a one-sided derivative at either
end point) then the tangent to γ exists at γ (t) and a point on the tangent is of the form
γ (t)+ hγ ±(t) for any h ∈ R. (Figure 4.1.)
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Figure 4.1 The tangent to a path γ : [a,b] →C.

Proof. Let γ (t) = x(t) + iy(t), where x and y are real functions. Then γ ±(t) = x±(t) +

iy ±(γ (t)). The parametric function f : [a,b]→ R2 given by f (t) = (x(t), y(t)) has a graph
whose tangent is (x(t)+ hx±(t), y(t)+ hy±(t)) for any h ∈ R. This is the complex number

x(t) + hx±(t)+ i( y(t)+ hy±(t)) = x(t) + hx±(t)+ i(y(t)+ hy±(t)) = γ (t) + hγ ±(t).

This proposition will be of value when we seek to visualise paths that are differen-
tiable, particularly for complex integration in Chapter 6 and in later applications.

4.5 Power Series

More exciting creatures are power series, for they will later prove to be the foundation
for all differentiable complex functions.
By Corollary 4.5, the derivative of a polynomial

p(z) = a0 + a1z+ · · · + anz
n

is the polynomial

p±(z) = a1 + 2a2z+ · · · + nanz
n−1

This suggests that if f is a power series

f (z) =

∞µ

n=0

anz
n

we should have

f ±(z) =

∞µ

n=0

nanz
n−1

If this is true, we say that f can be differentiated term by term. When is this the case?
Certainly f (z) must be convergent. The next two results show that this is almost suffi-
cient: in fact, term-by-term differentiation is always valid within the disc of convergence
of f (z).
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LEMMA 4.19. Let f (z) =
∑

anz
n converge absolutely for |z| < R. Then g(z) =∑

nanz
n−1 converges for |z| < R.

Proof. For |z| < R, choose r such that |z| < r < R. Then, by Theorem 3.25,
∑

anr
n

converges absolutely and there exists K ∈ R such that |anrn| < K for all n. Now q =

|z|/r is less than 1, so

|nanz
n−1| = n|an||z/r|

n−1rn−1

<
nK

r
qn−1

But for 0 ≤ q < 1 the real series
∑

nKqn−1 converges to K(1−q)−2 . By the comparison

test,
∑
|nanz

n−1| converges, so by Theorem 3.14 the series
∑

nanz
n−1 converges.

THEOREM 4.20. A power series f (z) =
∑

anz
n may be differentiated term by term

within its disc of convergence. That is,

f ±(z) =
µ

nanz
n−1

Proof. By Lemma 4.19, g(z) =
∑

nanz
n−1 is absolutely convergent for |z| < R. We

must show that for |z0| < R,

f
±
(z0) = lim

z→z0

²
f (z) − f (z0)

z− z0

³
= g(z0)

or equivalently that

lim
z→z0

²
f (z)− f (z0)

z− z0
− g(z0)

³
= 0

Taking our courage in both hands we compute

f (z)− f (z0)

z− z0
− g(z0) =

∞µ

n=1

²
an

zn − zn0

z − z0
− nanz

n−1

³

since power series may be added and subtracted term by term, by Lemma 3.12. But the
above expression can be written as

∞µ

n=1

an[z
n−1 + z0z

n−2 + · · · + zn−10 − nzn−10 ]

=

Nµ

n=1

an[z
n−1

+ z0z
n−2

+ · · · + z
n−1
0 − nz

n−1
0 ]

+

∞µ

n=N+1

an[z
n−1

+ z0z
n−2

+ · · · + z
n−1
0 − nz

n−1
0 ]

= ±1 +±2, say
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Given any ε > 0, we first choose any r such that |z0| < r < R. Then
∑

nanr
n−1 is

convergent and, as in Lemma 3.6, there exists N = N(ε) such that
∞µ

n=N+1

|nanr
n−1| < ε/4

Since |z0| < r, if z is close enough to z0 to ensure that |z| < r also, then

|±2| ≤
∞µ

n=N+1

2n|an|r
n−1 < ε/2 (4.6)

Furthermore,±1 is a polynomial in z so±1 → 0 as z→ z0. We can therefore find δ > 0

such that

|z− z0| < δ implies |±1| < ε/2 (4.7)

We now choose z close enough to z0 to ensure that both (4.6) and (4.7) hold, and then
´́
´́ f (z) − f (z0)

z − z0
− g(z0)

´́
´́ = |±1 +±2| ≤ |±1| + |±2| =

ε

2
+
ε

2
= ε

Therefore f ±(z0) = g(z0) as claimed.

Theorem 4.20 is immensely important, for it tells us not only about the first derivative
of a power series, but about all higher derivatives as well. We just repeat it as often as
we want to get:

COROLLARY 4.21. All the higher derivatives f ±, f ±±, f ±±± , . . . , f (k), . . . of a power series
f (z) =

∑
anz

n exists for z within the disc of convergence, and

f
(k)
(z) =

∞µ

n=k

n(n− 1) · · · (n− k + 1)anz
n−k

=

∞µ

n=k

n!

(n− k)!
anz

n−k

Proof. Use induction on k.

Replacing z by z−z0 in Corollary 4.21, we find that if a power series f (z) =
∑

an(z−

z0)
n has disc of convergence |z− z0| < R, then inside this disc of convergence, all the

higher derivatives of f exist, and

f (k)(z) =

∞µ

n=k

n!

(n− k)!
an(z− z0)

n−k

Putting z = z0 in this series we get

f
(k)
(z0) = k!ak

which gives yet another important corollary:
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COROLLARY 4.22 (Taylor’s Theorem). If f (z) =
∑

an(z− z0)
n for |z− z0| < R, then

ak =
f (k)(z0)

k!

We can thus express f (z) as a convergent Taylor series

f (z) =

∞µ

n=0

f (n)(z0)

n!
zn (|z − z0| < R)

Example 4.23. Suppose that f (z) = 1/(1 − z) = 1 + z + z2 + · · · for |z| < 1.

Differentiating, we find that

f ±(z) =
1

(1− z)2
= 1+ 2z+ 3z2 + · · ·

f ±±(z) =
2

(1− z)3
= 2+ 6z+ 12z2 + · · ·

and so on. We also have f (n)(0) = n! and f (z) =
∑

f (n)(0)zn/n as expected.

4.6 A Glimpse Into the Future

We now set the scene for an area where complex analysis is much better behaved
than real analysis: differentiability. A real function may be differentiable but have a
non-differentiable derivative. By repeated integration and the Fundamental Theorem
of Calculus, it follows that for any n there exist real functions that are differen-
tiable n times but not n + 1 times. There also exist continuous real functions that
are differentiable nowhere, such as the ‘blancmange function’ described later in this
section.

Complex functions are just as flexible as real ones when it comes to continuity, but the
condition of differentiability is much more stringent in the complex case. Constructing a
continuous complex function that is differentiable nowhere is trivial: a simple example

is the real part f (z) = re z, as we proved in Example 4.9. In compensation, we prove in
Chapter 10 that if a complex function is differentiable in a domain D, then it is differ-
entiable any number of times in D, and it even has a convergent power series expansion
near any point in D.

4.6.1 Real Functions Differentiable Only Finitely Many Times

In the real case, for any n ∈ N, there exist functions that are differentiable n times but
not n+ 1 times. A simple example when n = 1 is

φ(x) =

±
0 (x ≤ 0)

x2 (x > 0)
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Trivially,

φ
±
(x) =

±
0 (x ≤ 0)

2x (x > 0)

and an easy calculation gives

φ
±
(0) = lim

x→0

φ(x)− φ(0)

x
= 0

Thus φ ± exists, and is even continuous at 0. But φ±±(0) does not exist because

φ±(x)− φ±(0)

x
=

±
0 (x ≤ 0)

2 (x > 0)

More generally, the function

φ(x) =

±
0 (x ≤ 0)

xn+1 (x > 0)

is differentiable n times everywhere, but not n+ 1 times at the origin.
We shall see later that there is no similar method for piecing together complex func-

tions to obtain this type of behaviour. For a real function, there are only two ways to
approach a limit point x0: from the left (smaller values of x) and from the right (larger
values of x). We can piece real functions together quite happily, provided we make sure
that the left and right derivatives are the same to whatever extent we deem necessary.

4.6.2 Bad Behaviour of Real Taylor Series

Indeed, we can go further. Above, we pieced together 0 on the left and xn+1 on the right
to obtain a function that can be differentiated n times but not n+ 1 times. But we can
even find functions like

φ(x) =

±
0 (x ≤ 0)

e−1/x (x > 0)
(4.8)

which has all derivatives in agreement at the origin, when approached either from left or
right. This ‘Frankenstein’s monster’ creation is patched up well, but there is something

unnatural about it. Because all derivatives are zero at the origin, its Taylor series about
the origin is

∞µ

n=0

φ(n)(0)

n!
= 0+ 0x+ 0x2 + · · · + 0xn + · · · = 0

This converges for all real x, but its sum is not equal to φ(x).
Thus in the real case we can find infinitely differentiable functions that are not equal

to their Taylor series. Despite our reference to Frankenstein, there is nothing mysterious

about this. It just means that the remainder term Rn(x) in the Taylor series

φ(x) = a0 + a1x+ a2x
2 + · · · + anx

n + Rn(x)

does not tend to zero as n tends to ∞. Indeed, here Rn(x) = φ(x) for all n. (In the
theory of differentiable manifolds, the ability to patch real functions together smoothly

like this is actually very useful. It provides topological flexibility. In this context, the
complex case really is more complicated.)
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4.6.3 The Blancmange function

Real analysis has even more grey areas, inhabited by functions that are continuous every-
where yet differentiable nowhere. Bernard Bolzano found such a function around 1831,
but it was not published until 1922. Charles Cellérier discovered one around 1860, which
was published in 1890, shortly after his death. The first such function to be published
was constructed by Weierstrass in 1872, as the sum

f (x) =

∞µ

n=0

an cos(bnπx)

where 0 < a < 1, b is a positive odd integer, and ab > 1 + 3π/2. The smallest
value of b satisfying these conditions is b = 7. Weierstrass’s function is continuous
by uniform continuity of the terms in the sum. Term-by-term differentiation leads to
a series that does not converge, and Weierstrass gave a rigorous proof that the func-
tion is nowhere differentiable. Later Godfrey Harold Hardy improved the conditions to
0 < a < 1,ab > 1. Cellérier’s example is very similar to Weierstrass’s. Figure 4.2
shows how irregular this function is.
We describe a simpler example that goes by the name of the blancmange function.

Let G(x) be the distance from x ∈ R to the nearest integer. This has a graph like the
teeth of a saw:

G(x) =

±
x (0 ≤ x ≤ 1

2 )

1− x ( 12 ≤ x ≤ 1)

and G is periodic with G(x + n) = G(x) for any integer n. It is not differentiable at
x = 1

2
n for any integer n. Moreover, |G(x) ≤ 1

2
| for all x ∈ R. It follows that the

function Gn(x) = ( 1
4
)nG(4nx) is not differentiable at x = 1

2
( 1
4
)m for any integer m, and

satisfies 0 ≤ Gn(x) ≤
1
2 (
1
4 )

n .

The sum

b(x) =

∞µ

n=0

Gn(x)

is sketched in Figure 4.3, which shows why it is called the blancmange function.

Figure 4.2 Weierstrass’s continuous nowhere differentiable function.
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Figure 4.3 Top left: Successive halvings of the sawtooth function. Bottom left: Adding the
sawtooth functions gives successive stages of the blancmange function. Right: An advanced
stage of the construction. We show only the unit interval; the full function is periodic with period
1 and defined on the whole of R.

Intuitively, the curve is a fractal, a set with detailed structure on all scales of mag-

nification, Mandelbrot [13] and Falconer [4]. This is clear because the graph of the
blancmange function has smaller blancmanges everywhere. Some are clearly recognis-
able, while others are disguised by being sheared vertically as they stand on straight line
segments that lie at an angle. In general, there are two kinds of points on the graph:
those at dyadic rationals x = k2−n for integers k, n with n ≥ 0, where the graph comes

down vertically from the left and goes up vertically to the right. Here, under high mag-

nification the graph looks like a half-line pointing upwards. Everywhere else, the graph
is locally a tiny blancmange, sheared on a small line segment. This is easy to see when
the segment is not too steep, but not when it is nearly vertical.
A rigorous proof requires extra effort, and we sketch one now:

PROPOSIT ION 4.24. The blancmange function is continuous everywhere and differen-
tiable nowhere.

Proof. The estimate

0 ≤ b(x) ≤

∞µ

n=0

1
2 (

1
4)

n =

1
2

1−
1
4

= 2
3

holds, so by uniform continuity, as in Section 2.9 on space-filling curves, b is continuous
everywhere.

To prove it is differentiable nowhere, observe that in order for b to be differentiable
at α , the expression γ (x) = (b(x)− b(α))/(x − α) must tend to a limit. We construct a
sequence (αn)→ α such that γ (αn) does not converge.
Under each line segment of Gn there are two identical teeth of Gn+1 of length ( 14)

n ,

so we can find αn = α ³ ( 1
4
)n such that

Gm(αn) = Gm(α) (m ≥ n+ 1)

The gradient of the straight bit of the tooth of Gn and larger teeth is
Gm(αn)−Gm(α)

αn − α
= 1 (m ≤ n)
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Hence

γ (αn) =
b(αn)− b(α)

αn − α
≤

∞µ

n=0

Gm(αn)−Gm(α)

αn − α

is a sum of n+ 1 terms, each ³1. Now γ (αn) is an odd integer when n is even and an
even integer when n is odd. Therefore (γ (αn)) cannot tend to a limit.

Having created the bad function b, its antiderivative

b1(x) =

¶ x

0

b(t)dt

is differentiable once everywhere (with derivative b) but is twice differentiable nowhere.
Repeating this process inductively we obtain a function bn that is differentiable n times

everywhere (with derivative bn−1) but is (n+ 1) times differentiable nowhere.
Looking back at the idea of a space-filling curve, we begin to see why our intuitive

ideas of continuity and differentiability need modifying to fit with the formal epsilon-
delta definitions of continuity and limits. The space-filling curve is constructed as a
formal limit of curves made up of straight line segments, and in the construction we
take successively smaller line segments that change direction. In the case of the blanc-
mange function, successive curves change direction at dyadic rationals of the form k2−n

where k,n are integers and n ≥ 0. The limit function is continuous everywhere and
differentiable nowhere, with the slope at the dyadic rationals being vertically down to
the left and vertically up to the right. The space-filling path constructed here is the limit

of graphs whose real and imaginary parts also turn suddenly at dyadic rationals (Fig-
ure 2.26) yet the distance travelled in each step gets smaller and smaller (Figure 2.27).
This is how it manages to go through every point in the unit square.
Our strategy to deal with this problem is simple. When we calculate integrals in com-

plex analysis, we use ‘contours’ made up of a finite number of ‘smooth paths’, which
have non-zero continuous derivatives to ensure that the formal approach resonates with
our intuitive idea of tracing the contour in real time using a finger.

4.6.4 Complex Analysis is Better Behaved

Real analysis is a very hairy subject indeed. But what is the relevance of such bizarre
functions in complex analysis? The answer is: NONE WHATSOEVER. They have been
mentioned only to contrast the real case with the complex case.
There do, however, exist very simple complex functions that are continuous but differ-

entiable nowhere. An example is f (z) = |z|, whose continuity is easily proved, but fails
to satisfy the Cauchy–Riemann Equations at any point. There are also functions, such
as f (z) = |z|2, that are differentiable only at isolated points (here, the origin), and are
thus not differentiable twice at those points. But that is the end of the line. If a complex

function is differentiable once in a domain, then (as we prove in Chapter 10) it is differ-
entiable any number of times, has a convergent Taylor series, and is equal to its Taylor
series. The reason for this much nicer behaviour is that in computing the derivative
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f ±(z) = lim
z→z0

f (z) − f (z0)

z − z0

z can approach z0 from any direction in the complex plane. The existence of the limit

is therefore a much stronger condition than it is in the real case, and precludes patching
together different functions at z0.
The key to the whole theory of complex analysis is the fact that every differentiable

complex function has a power series expansion near any point of its domain, so is equal
to its own Taylor series as in Corollary 4.22. This will be established by a roundabout
route in Chapter 10, but it is worth waiting for, and it underlines our emphasis on power
series. They are not just good examples of differentiable functions: in a very genuine
sense they are the only examples.

4.7 Exercises

1. From first principles, differentiate:
(i) f (z) = z2 + 2z

(ii) f (z) = 1/z (z ²= 0)

(iii) f (z) = z3 + z2

2. Show that f (z) = |z| is continuous everywhere and differentiable nowhere. Show
that f (z) = |z|2 is continuous everywhere and differentiable at the origin but
nowhere else.

3. Differentiate:
(i) 3z2 + 2z3

(ii) (z2 + 3iz − 4)(z3− 7i)

(iii) (z5 − 13iz2)99

(iv) (z3 + 3)5(z4 + (26 − 11i)z)12

(v) (z2 + 3)/(4z3 + 5− 3i)2

(vi)

²
z + n

z − n

³n

, n ∈ N, z ²= n

4. Let
fn(z) =

·
1+

z

n

¸n

Show that

f ±n(z) = fn−1

²
(n− 1)z

n

³

What do you notice as n→ ∞?

5. Let Cπ = {z ∈ C : z ²= x ∈ R, x ≤ 0 be the ‘cut plane’ with the negative real
axis removed. Prove that Cπ is a domain. Define r : Cπ → C by (r(z))2 = z and

re r(z) > 0. Prove that r is continuous on Cπ , and hence show from first principles
that r ±(z) = 1/(2r(z)).

6. Let f (z) be a polynomial in z ∈ C. Prove that the function g(z) = f (z̄) is dif-
ferentiable everywhere, but that h(z) = f (z) is differentiable at 0 if and only if
f ±(0) = 0.
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7. In each of the following cases, for f defined on the domainD, find explicit formulas

for u(x, y), v(x, y) where f (z) = u(x, y)+ iv(x, y), where z = x+ iy and all of x, y,u, v
are real.
(i) f (z) = 1/z, D = {z ∈ C : z ²= 0}
(ii) f (z) = |z|, D = C
(iii) f (z) = z̄, D = C
Show that u, v satisfy the Cauchy–Riemann Equations everywhere in (i) and
nowhere in (ii), (iii).

8. Verify the Cauchy–Riemann Equations for the functions u(x, y), v(x, y) defined in
the given domains by
(i) u(x, y) = x3 − 3xy2 , v(x, y) = 3x2y− y3 (x, y ∈ R)
(ii) u(x, y) = sin x cosh y, v(x, y) = cos x sinh y (x, y ∈ R)
(iii) u(x, y) = x/(x2 + y2), v(x, y) = −y/(x2 + y2), (x2 + y2 ²= 0)

(iv) u(x, y) = 1
2
log(x2 + y2), v(x, y) = sin−1(y/

¹
x2 + y2) (x > 0)

In each case, state a complex function whose real and imaginary parts are u(x, y)

and v(x, y).

9. For z = x+ iy, let

f (z) =
x3(1+ i) − y3(1− i)

x2 + y2
(z ²= 0)

f (0)= 0

Show that f is continuous at the origin, the Cauchy–Riemann Equations are satisfied
there, yet f ±(0) does not exist. Why does this not contradict Theorem 4.12?

10. Let f (z) =
√
|xy| for z = x + iy. Show that the Cauchy–Riemann Equations

are satisfied at the origin yet f ±(0) does not exist. Why does this not contradict
Theorem 4.12?

11. Consider

f (z) =
xy2(x+ iy)

x2 + y4
(z = x+ iy ²= 0)

f (0) = 0

Verify that limz→z0( f (z) − z0)/(z − z0) = 0 as z → 0 along any straight line,
z = (a + ib)t, t ∈ R. This does not prove that f ±(0) = 0, however. By considering
z → 0 along the path z(t) = t2 + it, show that f is not differentiable at 0. (This
shows that when computing f ± it is not enough to consider a limit taken along certain
specific paths or types of path. An entire neighbourhood of the point concerned must

be considered.)
12. For each of the following, compute f ±(γ (t)),γ ±(t), ( fγ )±(t) and verify directly that

( fγ )±(t) = f (γ ±(t))γ ±(t)

(i) f (z) = z2 ,γ (t) = t3 + it4 (z ∈ C, t ∈ [0, 1])
(ii) f (z) = 1/z,γ (t) = cos t + i sin t (z ²= 0, t ∈ [0, 2π ])
(iii) f (z) = 1+ z + z2 + · · · ,γ (t) = t + it2 (|z| < 1, t ∈ [0, 1

2
])
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13. Suppose that f (z) =
∑

anz
n is convergent for all z ∈ C and satisfies f ± = f and

f (0) = 1. Find an for all n ≥ 0. Consider the derivative of g where

g(z) = f (c − z)f (z)

for c ∈ C and deduce that

f (a+ b) = f (a) + f (b)

for all a,b ∈ C. Compute f (1) to five decimal places. (A calculator or computer

may be used, but electronic assistance is not necessary.)
14. Show that for all α ∈ C the power series

fα(z) =

∞µ

n=1

α(α− 1) · · · (α − n+ 1)

n!
zn

converges for |z| < 1, and that in this domain its derivative is αfα(z)/(1+ z).

Is the radius of convergence 1 for all α ∈ C?
By differentiating fα(z)fβ(z)/fα+β(z) or otherwise, show that

fα+β(z) = fα(z)fβ(z)

Deduce that for |z| < 1,

fn(z) = (1+ z)n

for every integer n (positive or negative), and that

( f1/n(z))
n = (1+ z)

for all positive integers n.
(This power series can be used to define (1 + z)α for α ∈ C and any z in the

domain |z| < 1.)

15. Assume that the two power series s(z) =
∑

anz
n and c(z) =

∑
bnz

n are convergent
for all z ∈ C, and that they satisfy the relations s±(z) = c(z), c±(z) = −s(z). Deduce
the identities

an = −an−2/(n(n− 1)) bn = −an−2/(n(n− 1))

If further s(0) = 0,c(0) = 1, determine s(z) and c(z) completely. By differentiation,
or otherwise, prove that

(c(z))2 + (s(z))2 = 1

16. For a positive integer n the Bessel function of order n is defined by

Jn(z) =

∞µ

r=0

(−1)r( 12z)
n+2r

r!(n+ r)!

Show that this converges for all complex z and satisfies the differential equation

z2
d2y

dz2
+ z

dy

dz
+ (z2 − n2)y = 0
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Verify the following:
(i) Jn−1(z)+ Jn+1(z) =

2n
z Jn(z)

(ii) J ±n(z) =
n
z
Jn(z)− Jn+1(z)

(iii) J ±n(z) =
1
2
(Jn−1(z)− Jn+1(z))

(iv) J ±n(z) = Jn−1(z) −
n
z
Jn(z)

(v) d
dz(z

nJn(z)) = znJn−1(z)

(vi) J2(z)− J0(z) = 2J±±0 (z)

17. Define f : R → R by

f (x) =

±
0 (x ≤ 0)

e−1/x (x > 0)

Show that f is differentiable arbitrarily many times, and that f (n)(0) = 0 for all
n ∈ N.



5 The Exponential Function

An abstract theory of functions may be intellectually diverting, but it pays its way by
its more concrete applications by defining specific functions of particular interest and
establishing their properties. As a step in that direction we now discuss the complex

versions of the usual (real) exponential and trigonometric functions exp, sin, and cos,
defining them as power series. We also introduce complex versions of the usual related
functions such as tan and cosec. From these definitions we develop some basic properties
of these functions. Euler’s famous formula

exp(iθ) = cos θ + i sin θ

follows at once from these definitions, and shows that the fundamental function here is
exp. All of the others may be defined very simply in terms of it. We also discuss complex

generalisations of the hyperbolic functions, such as sinh, cosh, tanh, which again have
simple definitions in terms of exp.
Most of the material generalises directly from the real case, and will be presented in

a compact form. In addition to deriving the standard formulas, we place some emphasis

on convincing the reader that the power series do indeed represent the usual real func-
tions, and that in particular the geometric interpretations of sin and cos in trigonometry

are valid. We also derive further properties of these functions that are peculiar to the
complex case, including their relation to hyperbolic functions.
The complex version of the logarithm requires deeper analysis, and is held over to

Chapter 7.

5.1 The Exponential Function

Definition 3.26 defines the exponential function for complex numbers as the power
series

exp z =

∞±

n=0

zn

n!
(5.1)

which is absolutely convergent for all z ∈ C. We may therefore differentiate term by
term. The result is the same series, proving that

d

dz
exp z = exp z (5.2)
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With a little ingenuity we can use (5.2) to prove the formula

exp(z1 + z2) = exp(z1) exp(z2) (5.3)

derived in a cumbersome way in Chapter 3. Consider

f (z) = exp(z) exp(c− z)

for c ∈ C. Differentiate:

f ±(z) = exp±(z) exp(c− z)+ exp(z) exp±(c− z)

= exp(z) exp(c− z) + exp(z) exp(c− z)(−1)
= 0

By Theorem 4.14 f is constant; the constant must equal f (0)= exp(c). So

exp(z) exp(c− z) = exp(c)

Put z = z1 , c = z1 + z2 to obtain (5.3).
We wish to use the customary notation ez for exp z. To avoid ambiguities we must

show that when z is rational, say z = m/n, this agrees with the usual real exponential
em/n = n

√
em. We do this as follows.

First, observe that exp(x) > 0 for all x ∈ R. This is obvious from the power series
when x ≥ 0. But when x < 0 we know that exp(−x) exp(x) = exp(0)= 1, so exp(−x) =
1/exp(x) > 0. Therefore the nth root of exp(x) has an unambiguous meaning for any
positive integer n.
Next, define the real number

e = exp(1)= 2.718 281 . . . (5.4)

by an easy computation using (5.1) with z = 1. Using (5.3) and induction on n we obtain

exp(nz) = (exp(z))n

for any positive integer n. Therefore

exp(n) = (exp(1))n = en

Clearly

exp(0) = 1

Then

exp(n) exp(−n) = exp(n− n) = exp(0) = 1

so that

exp(−n) = (exp(n))−1 = (en)−1 = e−n

Now, for any rational m/n, (n > 0) we have

(exp(m/n))n = exp(nm/n) = exp(m) = em
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so that

exp(m/n) = (em)1/n = em/n

Thus the notation

e
z
= exp(z)

does not conflict with the standard notation for powers of e, so we may (and do) use it
from now on. Equation (5.3) becomes

ez1 ez2 = ez1+z2 (5.5)

Putting z = x+ iy this gives

ex+iy = exeiy

Here ex is the usual real exponential. So we know how ez behaves provided we also
understand eiy. We study both of these in the next two sections.

5.2 Real Exponentials and Logarithms

We briefly recall some standard properties of ex when x is real.
Clearly ex > 1+ x for x > 0, which implies that ex > 0 for x ≥ 0, and ex → ∞

as x → ∞. Also e−x = 1/ex for x < 0, so ex > 0 for all x ∈ R and ex → 0

as x → −∞. The derivative of ex is ex > 0 so ex is monotonic increasing for
all x.

That is, ex defines a continuous strictly increasing function from R onto R+ = {x ∈
R : x > 0}. By the Intermediate Value Theorem ex has a continuous strictly increasing
inverse function, defined to be the natural logarithm

log : R+→ R

with the property

y = log x ⇐⇒ x = ey

From (5.5) we obtain

log(x1x2) = log x1 + log x2 (x1, x2 > 0) (5.6)

Let y = log x, y0 = log x0 (x, x0 ∈ R
+). Since log is continuous,

lim
x→x0

log x− log x0

x− x0
= lim

y→y0

y− y0

ey − ey0
=

1

ey0
=

1

x0

Therefore

d

dx
log x =

1

x
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5.3 Trigonometric Functions

Definition 3.26 also defines the complex sine and cosine functions by the power series

cos z =

∞±

n=0

(−1)n
z2n

(2n)!
(5.7)

sin z =

∞±

n=0

(−1)n
z2n+1

(2n+ 1)!
(5.8)

We know these are absolutely convergent for all z ∈ C.
Putting −z for z in (5.7, 5.8) we see that cos is an even function and sin is an odd

function. That is,

cos(−z) = cos(z)

sin(−z) = − sin(z)

Also

cos(0) = 1

sin(0) = 0

Differentiating term by term,

d

dz
cos z = sin z (5.9)

d

dz
sin z = − cos z (5.10)

Term-by-term addition, as in Chapter 3, leads to Euler’s formula

e
iz
= cosz + i sin z (5.11)

Since (eiz)n = einz for any integer n, equation (5.11) implies De Moivre’s Formula

(cos z + i sin z)n = cos nz+ i sin nz (5.12)

This may be used to obtain rapid derivations of formulas for cos nθ and sin nθ when

θ ∈ R, by equating real and imaginary parts of both sides (Exercise 6).
Euler’s Formula has the famous corollary

e
iπ
= −1 (5.13)

Formulas (5.11) and (5.13) seem surprising when we first encounter them, because there
is no obvious connection between e and π . Historically, these special numbers arose in
very different areas of mathematics – natural logarithms and the circumference of a
circle. Moreover, it is hard to see why i, which arises from yet a third area, polynomial

equations, should link them together. But in fact, there is a simple reason why these
results hold, based on yet another area of mathematics: differential equations, applied to
uniform rotation in the plane. We discuss this in Section 5.6. If anything, this dynamic
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explanation adds to the beauty of these formulas by showing that they are at the core of
a remarkable unification of distinct mathematical concepts.
Replacing z by −z in (5.11) gives

e−iz = cos(−z) + i sin(−z) = cos z− i sin z (5.14)

From (5.11) and (5.14),

cos z = 1
2 (e

iz+ e−iz) (5.15)

sin z = 1
2i
(eiz − e−iz) (5.16)

From (5.15, 5.16), and (5.5), we obtain the usual addition formulas for sin and cos, now
valid for all complex numbers z1, z2:

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2 (5.17)

sin(z1 − z2) = sin z1 cos z2 − cos z1 sin z2 (5.18)

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2 (5.19)

cos(z1 − z2) = cos z1 cos z2 + sin z1 sin z2 (5.20)

Putting z1 = z2 = z in (5.20) gives

cos2 z+ sin2 z = 1 (5.21)

5.4 An Analytic Definition of π

Historically the real number π was defined as the ratio of the circumference of a circle
to its diameter, and only later did its importance for trigonometric functions emerge. We

reverse the process, defining π analytically and eventually showing in Section 7.1 that
our definition agrees with the geometric one.
The idea is to define π/2 as the first positive real solution of the equation cos x = 0.

The problem is to show that there is such a thing.
We know that cos and sin are continuous functions. Also,

cos(2) = 1−
22

4!
+

26

6!
− · · · −

24n−2

(4n− 2)!
+

24n

(4n)!
− · · ·

= 1− 2+
2

3
− · · · −

24n−2

(4n)!
[4n(4n− 1)− 4]− · · ·

< 1− 2+
2

3
< 0

But cos(0) = 1. By the Intermediate Value Theorem, cos t0 = 0 for some t0 ∈ (0, 2).
Let k be the greatest lower bound of {t ∈ R : t > 0, cos t = 0}. By continuity,

cos k = 0

By the definition of k, if 0 ≤ x < k then cos x > 0.

We define
π = 2k
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Then the number π has been uniquely defined by the properties π/2 > 0, cos(π/2) = 0

and 0 ≤ x < π/2 implies cos x > 0.

Since cos(2) < 0, it follows that 0 < π < 4. This is a crude estimate, and we improve

it in Exercises 17 and 18 below.

5.5 The Behaviour of Real Trigonometric Functions

We know that cos x is positive for 0 ≤ x < π/2. Since d
dx
sin x = cosx, it follows that

sin is strictly increasing on [0,π/2]. Since

sin
2 π

2
+ cos

2 π

2
= 1

and cosπ/2 = 0, we must have sinπ/2 = ²1. But since sin is increasing on [0,π/2],
we must have

sin
π

2
= 1

Now (5.18) implies that

sin
²π
2
− x

³
= cos x (5.22)

Hence cos decreases monotonically from 1 to 0 in [0,π/2]. Using (5.17)

and (5.19) repeatedly, we can deduce the behaviour of sin and cos in the intervals
[π/2,π ], [π , 3π/2], and [3π/2, 2π ]. We obtain

cos
²π
2
+ x

³
= − sin x

sin
²π
2
+ x

³
= cos x

sin(π + x) = − sin x

and so on. We tabulate the results in Table 5.1, where a³ b means ‘strictly increasing
from a to b’, and a´ bmeans ‘strictly decreasing from a to b’.

From the table,

cos 2π = 1

sin 2π = 0

Therefore

cos(x+ 2π ) = cos x cos 2π − sin x sin 2π = cos x (5.23)

sin(x+ 2π ) = sin x cos 2π + cos x sin 2π = sin x (5.24)

leading to

cos(x + 2nπ ) = cos x

sin(x + 2nπ ) = sin x

for all n ∈ Z. So sin and cos are periodic with period 2π. In particular the behaviour in
the table repeats on each interval [2nπ, (2n+ 2)π ].
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Table 5.1 Behaviour of sin and cos in intervals of length π/2.

interval cos sin

[0,π/2] 1´ 0 0 ³ 1

[π/2, π] 0´ −1 1 ´ 0

[π, 3π/2] −1 ³ 0 0 ´ −1
[3π/2, 2π ] 0³ 1 −1 ³ 0

In this way, purely formal considerations show that sin x and cos x have their usual
geometric properties for all real x, at least in outline. The final remaining step is to
identify the point cos θ + i sin θ = eiθ on the unit circle |z| = 1 with the point θ radians

from 1 in an anticlockwise direction. We indicate two different approaches in Section 5.6
and Exercise 8 in Chapter 6. We also discuss the topic in detail in Chapter 7.
More precise computations of the values of these functions may be performed to any

desired degree of accuracy. By inspection, it may be seen that for real x (positive or neg-
ative) the terms of the power series for sin x and cos x always alternate in sign. From the
standard theory for alternating real series, the sum of the first n terms alternately over-
estimates and underestimates the actual limit. This lets us make very precise estimates

of the trigonometric functions.

Example 5.1. Compute ei to four decimal places.
We have ei = cos(1) + i sin(1). Now

cos(1) = 1−
1

2!
+

1

4!
−

1

6!
+

1

8!
− · · ·

Considering partial sums:

cos(1) < 1

cos(1) > 1−
1

2!
= 0.5

cos(1) < 1−
1

2!
+

1

4!
= 0.541 66 . . .

cos(1) > 1−
1

2!
+

1

4!
−

1

6!
= 0.540 27 . . .

cos(1) < 1−
1

2!
+

1

4!
−

1

6!
+

1

8!
= 0.540 30 . . .

Therefore

cos(1) = 0.5403 (to 4 decimal places)

Similarly

sin(1) = 0.8415 (to 4 decimal places)

Therefore

ei = 0.5403+ 0.8415i (to 4 decimal places)
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5.6 Dynamic Explanation of Euler’s Formula

Euler’s formula(s) linking e, i,π seem surprising, but the existence of such a link, and
even the details of how it goes, can be deduced very naturally from standard ideas in
the theory of differential equations. This section is intended as motivation, and to help
explain why such a connection exists. It can be made rigorous by setting up the necessary
ideas formally. It is not used later in the book and can be skipped.
Consider the linear differential equation

dz

dt
= iz (z ∈ C) (5.25)

on C. Equation (5.2) and the chain rule show that a solution z(t) with initial condition
z(0) = 1 is

z(t) = e
it

This solution is unique since the difference w between any two solutions satisfies
dw

dt
= 0

so w(t) is constant, and must equal w(0)= 0.

Geometrically, (5.25) corresponds to a point particle z(t) moving in the plane C, and
it states that the velocity vector z±(t) is at right angles to the position z(t), and the speed
is |z(t)|, Figure 5.1. (Here ± indicate the time-derivative. The right angle arises from the
factor i in the equation.) That is: the particle always moves at right angles to the line
joining it to the origin. Intuitively, the particle must move along the unit circle. To verify
this, we prove that z±(t) is always tangent to the unit circle S, or equivalently that z(t) ∈ S
for all t. The key point is that |z(t)|2 is conserved; that is, it is constant. Compute:

d

dt
|z(t)|2 =

d

dt
z(t)z̄(t) = z

±(t)z̄(t) + z(t)z̄±(t) = (ieit )(e−it)+ (eit)(−ie−it) = i− i = 0

so |z(t)|2 is constant. Since it equals 1 at time 0, we know that |z(t)|2 = 1 for all t.
Therefore z(t) always lies on the unit circle.

Figure 5.1 Uniform motion round the unit circle.
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The speed of motion is

|z±(t)| =
´
z±(t)z̄±(t) =

µ
(ieit)(−ie−it) = 1

so the particle moves with unit speed (anticlockwise).
After time t, the particle therefore moves a distance t along the unit circle in the

anticlockwise direction; that is, through an angle of t radians.
At time t = π is has gone a distance π round the unit circle – that is, halfway round.

So it must lie at the point diametrically opposite the starting point z(0) = 1. This point
is −1. So z(π ) = −1; that is, eiπ = −1, the miraculous formula.

More generally, at time t its position on the unit circle makes angle t radians with
the real axis at the origin, so its Cartesian coordinates are (cos t, sin t). Interpreted as a
complex number, this point is cos t + i sin t. Therefore

e
it
= cos t + i sin t

and we recover Euler’s formula (5.11). This approach is closely related to Section 7.1.

5.7 Complex Exponential and Trigonometric Functions are Periodic

We are used to the real sine and cosine functions being periodic, with period 2π , and
we have proved that the same property holds for their complex generalisations. Euler’s
formula shows that their periodicity is inherited by the complex exponential function, as
we now describe.

DEFIN IT ION 5.2. A complex function f : S→ C has period ρ ∈ C if

f (z+ ρ) = f (z) (z, z+ ρ ∈ S)

Obviously, if ρ is a period of f , so is nρ for any positive integer n such that mρ ∈ S

for m ≤ n, and with similar conditions we can also take n negative.
For the complex exponential, S = C, and

e2π i = cos 2π + i sin 2π = 1

so

ez+2π i = eze2π i = ez · 1 = ez

Therefore 2π i is a period for exp. So is 2nπ i for any n ∈ Z. There are no others:

PROPOSIT ION 5.3. The complex number ρ is a period of exp if and only if ρ = 2nπi

for some n ∈ Z.

Proof. If ρ is a period then eρ = ez+ρ/ez = 1. If ρ − u+ iv then

1 = eu+iv = eueiv = eu(cos v+ i sin v)

Taking the modulus,
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1 = |eu|| cos v+ i sin v| = eu

By properties of the real exponential proved in Section 5.2, u = 0. So now

cos v+ i sin v = 1

Therefore cos v = 1, sin v = 0. By Table 5.1, v = 2nπ , (n ∈ Z).

We also have:

PROPOSIT ION 5.4. The exponential function ez is non-zero for any z ∈ C.

Proof. For any z ∈ C, eze−z = e0 = 1.

We now investigate sin and cos for periodicity in C. Certainly 2nπ is a period of both,
because the proofs of (5.23) and (5.24) for real x also work for complex z.

PROPOSIT ION 5.5. The complex number ρ is a period of sin or cos if and only if
ρ = 2nπ for some n ∈ Z.

Proof. Since sin(z + π/2) = cosz by (5.17), it follows that ρ is a period for cos if and
only if it is a period for sin. Then

cos(z+ ρ) = cos z

sin(z+ ρ) = sin z

for all z ∈ C. But then

e
i(z+ρ)

= cos(z+ ρ)+ i sin(z + ρ) = cos z + i sin z = e
iz

so iρ is a period of exp. By Proposition 5.3, iρ = 2nπ i for some n ∈ Z, so ρ = 2nπ .

We can also find the zeros of sin and cos:

PROPOSIT ION 5.6. Let z ∈ C. Then

cos z = 0 if and only if z = (n+ 1
2 )π

sin z = 0 if and only if z = nπ

where n ∈ Z.

Proof. Since sin(z+ π/2) = cos z by (5.17), the second equation implies the first. Now
sin z = 0 if and only if (eiz − e−iz)/2i = 0. This holds if and only if eiz − e−iz = 0, that
is, if and only if e2iz = 1. So 2iz = 2nπi. Therefore z = nπ as claimed.

5.8 Other Trigonometric Functions

If z µ= (n+ 1
2
)π then cos z µ= 0, so we may define

tan z =
sin z

cosz
(5.26)

If S = {z ∈ C : z µ= (n + 1
2
)π ,n ∈ Z} then S is a domain, and tan : S → C is a

differentiable function. Its derivative is
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d

dz
tan z =

cos z d
dz sin z − sin z d

dz cosz

cos2 z

=
cos z · cosz − sin z · (− sin z)

cos2 z

=
cos2 z + sin2 z

cos2 z

= 1+ tan2 z

Similarly we define

cot z =
cos z

sin z
(z µ= nπ ) (5.27)

sec z =
1

cos z
(z µ= (n+ 1

2
)π ) (5.28)

cosecz =
1

sin z
(z µ= nπ ) (often also written csc z) (5.29)

These are all differentiable functions (on the stated domains) whose derivatives may

again be calculated in the usual manner. All of the standard formulas relating these
trigonometric functions may be deduced from properties of sin and cos, hence also apply
for complex values of the variables.
For example, using (5.17) and (5.19), we obtain

tan(z1 + z2) =
tan z1 + tan z2

1− tan z1 tan z2

provided that z1 , z2 , z1 + z2 ∈ S. This implies that tan(z + π) = tan z, so π is a period
for tan. It is easy to see that the only periods of tan are nπ for n ∈ Z.

The reader is encouraged to develop all of his or her favourite trigonometric formulas

for the complex case, including the basic properties of cot, sec, and cosec.

5.9 Hyperbolic Functions

As in the real case, we define

sinh z = 1
2
(ez− e−z)

cosh z = 1
2 (e

z+ e−z)

for z ∈ C. Differentiating,
d

dz
sinh z = cosh z

d

dz
cosh z = sinh z

Properties of the hyperbolic functions, analogous to those of trigonometric functions
(such as addition formulas for sinh(z1 + z2)) follow either by direct computation, or by
using the obvious identities

sin iz = i sinh z
cos iz = cosh z
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For example,

cosh2 z− sinh2 z = cos2 iz− (−i sin2 iz)
= cos2 iz+ i sin2 iz
= 1

The functions tanh, coth, sech, and cosech (or csch) are defined in the obvious way. We

leave it to the reader to discover their properties, including zeros and periods.
Hyperbolic functions occur in expressions for the real and imaginary parts of sin z

and cos z. Thus let z = x+ iy. Then

sin z = sin(x+ iy)

= sin x cos iy+ cos x sin iy
= sin x cosh y+ i cos x sinh y (5.30)

Similarly

cos z = cos x cosh y− i sin x sinh y (5.31)

5.10 Exercises

1. Express the following in the form a+ ib for real a,b:
(i) exp(i)
(ii) e2+iπ
(iii) 1/ exp(2+ iπ )

2. Express the following in the form a+ ib for real a,b:
(i) sin(i)
(ii) cos(i)
(iii) sinh(i)
(iv) cosh(i)
(v) cos(π/4− i)

(vi) tan(1+ i)

3. Differentiate the functions defined as follows:
(i) exp(z2 + 2z)

(ii) 1/ exp(z)
(iii) exp(z2)/exp(z+ 1)

4. Differentiate the functions defined as follows:
(i) tan(z2)
(ii) sinh(z+ 2) exp(z3)
(iii) sin(z) cosh(z) exp(z)

5. Use the identity eiθeiφ = ei(θ+φ) to derive the usual formulas for cos(θ + φ) and
sin(θ + φ). By a similar method, show that

1/(cos θ + i sin θ) = cos θ − i sin θ
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6. Use the identity
(
eiθ

)3
= e3iθ to give the usual formulas for cos(3θ) and sin(3θ ).

Derive similar formulas for cos(4θ), sin(4θ), cos(5θ), and sin(5θ).
7. Draw the following paths:

(i) γ (t) = e−it (t ∈ [0,π])

(ii) γ (t) = 1+ i + 2e−it (t ∈ [0, 2π ])
(iii) γ (t) = z0 + re−it (t ∈ [0, 2π]), where z0 ∈ C and r > 0

(iv) γ (t) = t + i cosh t (t ∈ [−1, 1])
(v) γ (t) = cosh t+ i sinh t

8. ‘Osborne’s rule’ states that any formula involving sin and cos has an analogous
formula involving sinh and cosh, which is the same in every way except that the
product of two sines must be replaced byminus the product of two hyperbolic sines.
For each of the following formulas, write down the corresponding formula using
Osborne’s rule and verify it from first principles:
(i) sin 2A + cosA = 1

(ii) sin(A − B) = sinA cosB− cosA sinB

(iii) cos(A+ B) = cosA cosB− sinA sinB

Comment on Osborne’s rule in the light of the formulas

cos iz = cosh z sin iz = i sinh z

9. Show that the complex conjugate of cos z is cos z̄ and that of sin z is sin z̄. Verify the
identities

| sin z|2 = 1
2 (cosh 2y− cos 2x) = sinh2 y+ sin2 x = cosh2 y− cos2 x

| cos z|2 = 1
2
(cosh 2y+ cos 2x) = sinh2 y+ cos2 x = cosh2 y− sin2 x

10. Show that | cos z|2+ | sin z|2 = 1 if and only if z is real, and that cos z is unbounded
on C (that is, no K > 0 exists such that | cos z| ≤ K for all z ∈ C). This contrasts
with the bound | cos x| ≤ 1 for all real x.

11. Derive formulas for the real and imaginary parts of the following functions of z, and
check directly that they satisfy the Cauchy–Riemann Equations:
(i) exp z
(ii) sin z
(iii) cos z
(iv) sinh z
(v) cosh z

12. Derive formulas for the real and imaginary parts of the following functions of z,
specifying the largest domain on which they are defined, and check directly that
they satisfy the Cauchy–Riemann Equations:
(i) tan z
(ii) tanh z
(iii) cosec z
(iv) cosech z
(v) cot z
(vi) coth z
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13. Write tanh(x + iy) in real and imaginary parts and show that tanh(x + iy) is real if
and only if y = nπ/2 for n ∈ Z.

14. For each of the functions exp, cos, sin, tan, cosh, sinh, tanh, find the set of points on
which it assumes:

(i) real values; and
(ii) purely imaginary values.

15. By considering the real and imaginary parts of

1+ z + z2 + · · · + zn =
1− zn+1

1− z

find explicit formulas for the sums:

(i) 1+ cos x+ cos 2x+ · · · + cos nx

(ii) sin x + sin 2x+ · · · + sinnx

By similar methods, find:
(iii) cos x + cos 3x + · · · + cos(2n− 1)x

(iv) sin x+ sin 3x+ · · · + sin(2n− 1)x

(v) sin x− sin 2x+ · · · + (−1)n sinnx

(vi) cos θ + cos(θ + φ) + · · · + cos(θ + nφ)

(vii) sin θ + sin(θ + φ)+ · · · + sin(θ + nφ)

16. If z(t) = x(t)+ iy(t) is a solution of the differential equation

d2z

dt2
+ λz = k0e

iωt
(λ, k0,ω ∈ R) (5.32)

show that x = x(t) = re z(t) is a solution of

d2x

dt2
+ λx = k0 cosωt (5.33)

By finding solutions of (5.32) of the form z(t) = keiωt, find a solution of (5.33).
If k0 is complex, say k0 = k1e

iε (k, ε ∈ R), and λ,ω are real, write down the real
part of (5.32) to obtain

d2z

dt2
+ λz = k0 cos(ωt + ε) (5.34)

Show that there is a solution of (5.34) of the form

x(t) =
k1

λ − ω2
cos(ωt + ε)

17. By using the sum of the geometric progression

1+ z + z2 + · · · + zn =
1− zn+1

1− z

find An(x) such that

1

1+ x2
= 1− x2 + x4 − · · · + (−1)nx2n + An(x)
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Verify that the derivative of tan−1 x is 1/(1+ x2) where tan−1 : R → (−π/2,π/2)

is the inverse function of tan : (−π/2,π/2)→ R. Hence deduce that

tan−1 t =

¶ t

0

dx

1+ x2
= t− t3/3+ t5/5− · · · + (−1)nt2n+1/(2n+ 1)+

¶ t

0

An(x)dx

By estimating the size of the second integral, show that the power series

t − t3/3+ t5/5− · · · + (−1)nt2n+1/(2n+ 1)+ · · ·

converges to tan t for |t| < 1.
Deduce Gregory’s series

π

4
= 1−

1

3
+
1

5
−
1

7
+ · · ·

18. Gregory’s series converges very slowly. Classically, better methods for calculating
π were obtained using the related series

π

4
= tan

−1 1

2
+ tan

−1 1

3
π

4
= 4 tan−1

1

5
+ tan

−1 1

239

Verify these formulas using the addition formula for tan(θ + φ). Use the second to
calculate π correct to 5 decimal places. (This requires only one term of tan−1 1

239

and five terms of tan−1 1
5 .)

Series that converge far more rapidly to π are now known. You can find them
easily on the Internet.
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The next part of the grand plan is to define complex integration by analogy with the real
case, and establish the inverse relation between differentiation and integration.
Consider a complex function f : D → C on a domain D, and let z0 , z1 ∈ D. The

real integral
± b

a f (t)dt does not generalise immediately to the complex integral
± z1
z0

f (z)dz

because this expression does not specify how z goes from z0 to z1. To do that, we must

specify a path γ between them. A sensible notation for the integral is then
±
γ
f (z)dz, or±

γ
f for short.
In real analysis the value of a definite integral

± b

a f (t)dt depends only on the limits

a,b. Complex analysis is more complicated, and the integral along a path may depend
on the path as well as on its end points. We give a simple example in Section 6.10 as
soon as we have introduced the necessary concepts and techniques.
There are two approaches to defining

±
γ
f . The first is to build up the theory of com-

plex Riemann sums by mimicking the real case. We do this in Sections 6.1 and 6.2. This
approach applies to any continuous function, provided it is integrated along a continu-
ous path γ : [a,b] → C. This is one reason why we built the condition of continuity
into the definition of a path in Chapter 2, by requiring γ to be a continuous map.

In the special case where the function γ is continuously differentiable, with derivative
γ
±, we derive an explicit formula for the integral:

²

γ

f =

² b

a

( f γ (t))γ ±(t)dt (6.1)

Here z0 = γ (a), z1 = γ (b). This formula makes sense only when γ ± is defined and the
expression concerned is Riemann integrable; the requirement that γ should be continu-
ously differentiable is the simplest way to ensure this. To simplify terminology, such a
path is said to be smooth.

A key result, the Estimation Lemma 6.41, bounds the absolute value of such an inte-
gral by the product of the supremum of | f (z)| on γ and the length of the path γ . It
turns out that ‘length’ need not be a meaningful concept for a continuous path – another
somewhat counterintuitive fact – but it is well-behaved for smooth paths. In Section 6.3
we define ‘length’ and show that for any smooth path it is given by the simple formula

L=

² b

a

|γ ±(t)|dt (6.2)

Notice that the derivative of γ features explicitly in this formula, which is one reason
for assuming smoothness.
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These equations lead to a second approach, in which the reader is assumed to be
familiar with real integration. Why not restrict the theory to smooth paths (or, more

generally, piecewise smooth paths – that is, finite sums of smooth paths – which pose
no new problems)? Then we can use (6.1) and (6.2) to define

±
γ f and L. Admittedly,

the integrand ( f γ (t))γ ±(t) in (6.1) is complex, but we can reduce the formula to real
integrals by writing it as U(t)+ iV(t) and defining

²

γ

f =

² b

a

U(t)dt + i

² b

a

V (t)dt

We adopt this method in Section 6.8 as an alternative route to complex integration,
allowing Sections 6.1–6.3 to be omitted. This short cut has a price. It means that a
couple of proofs later in the chapter must be given in a more technical and less intuitive
manner. But this price is not very great, and it leaves the reader with a genuine choice:
work through the theory of complex Riemann integration to experience the full analogy
with the real case, using continuous paths, or bypass the next three sections and start at
Section 6.4, restricting to smooth paths.

6.1 The Real Case

For the reader who has chosen to build up the analogy between the real and complex

integrals, we begin by recalling the real case.
The Riemann integral

± b
a
φ(t)dt of a real function φ : [a,b] → R is defined in stages.

First, subdivide the interval [a,b] to obtain a partition P of [a,b] given by a = t0 < t1 <

· · · < tn = b, and choose intermediate points sr in each subinterval tr−1 ≤ sr ≤ tr. Then
form the Riemann sum

S(P,φ) =

n³

r=1

φ(sr)(tr − tr−1)

The points t0, t1, . . . , tn are called the division points of P. Another partition Q is said to
be finer than P if the division points of P are all included in those ofQ.
The following result is well known from real analysis; we quote it without proof.

LEMMA 6.1. Let φ : [a, b] → R be continuous. Then there exists a real number A such
that for any ε > 0 there is a partition Pε of [a,b] such that, for every partition P finer
than Pε , we have

|S(P,φ) − A| < ε

This real number A is denoted by
± b
a φ(t)dt, and is the Riemann integral of φ from a

to b.

The actual computation of
± b
a
φ(t)dt is usually performed by antidifferentation:

THEOREM 6.2 (Fundamental Theorem of Calculus). (i) If a real function φ is contin-
uous on [a,b] and F ± = φ , then

² b

a

φ(t)dt = F(b)− F(a)
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(ii) If φ is continuous on [a,b] and

I(x) =

² x

a

φ(t)dt (x ∈ [a, b])

then I± = φ .

Example 6.3. To compute
± b

a t5dt we do not need to calculate the sums S(P,φ) where
φ(t) = t5 . Since F(t) = t6/6 satisfies F± = φ , Theorem 6.2(i) immediately gives

² b

a

t
5
dt = 1

6b
6 − 1

6a
6

More generally, we can compute
± b

a
φ(t)dt by seeking an antiderivative F and

appealing to Theorem 6.2(i).
Before passing to the complex case, it is helpful to consider a slight generalisation:

the Riemann–Stieltjes integral
± b

a φ(t)dθ , where θ is a second real function. Here, given
a partition P of [a, b] as above, we form the sum

S(P,φ, θ) =

n³

r=1

φ(sr)(θ(tr)− θ (tr−1))

From real analysis we have a generalisation of Lemma 6.1:

LEMMA 6.4. Let φ , θ be real functions defined on [a,b], such that φ is continuous and
θ has continuous derivative θ ±. Then the real number B =

± b

a φ(t)θ
±(t)dt satisfies the

following condition:
Given any ε > 0 there is a partition Pε of [a, b] such that, for every partition P finer

than Pε , we have
|S(P, φ, θ)− B| < ε

The limit B of the sum S(P,φ , θ) is also denoted by
± b

a φ(t)dθ . It is the Riemann–

Stieltjes integral of φ from a to b with respect to θ . Lemma 6.4 tells us that when θ is

differentiable, the Riemann–Stieltjes integral
± b

a
φ(t)dθ is equal to the Riemann integral

± b

a φ(t)θ
±(t)dt. The conditions of the lemma ensure that the integrand φ(t)θ ±(t) exists and

is continuous.
The Riemann and Riemann–Stieltjes integrals exist under far more general conditions

on φ, θ than those we have mentioned, and the reduction from the Riemann–Stieltjes

integral to the Riemann integral is then not always valid. The conditions in Lemma 6.4
are all that we require in this book.

6.2 Complex Integration Along a Smooth Path

Riemann sums define complex integrals for continuous functions and paths, but we can
derive a simple formula for the integral, which often lets us compute it, if we work with
a more special class of paths: those with continuous derivatives.
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DEFIN IT ION 6.5. A path γ : [a, b] → C is smooth if γ ± exists and is continuous
throughout all of [a,b].

This means that if γ (t) = x(t)+ iy(t), where x and y are real, then x± and y± exist and
are continuous on the whole of [a,b], including one-sided derivatives at the end points.
The definition is intended to formalise the physical sense of drawing a smooth path

with a finger from the starting point to the final point. Invoking dynamical imagery,

the path γ describes a point particle moving in the plane, whose position at any time

t ∈ [a,b] is γ (t). Smoothness ensures that the point γ (t) moves with a specific velocity
at all times t, namely γ ±(t), and that this velocity changes continuously. Our intuition
here is not just geometric: it is dynamic.

Recall that velocity is usually described as ‘speed and direction’, where speed is the
magnitude of the velocity and direction is determined by the time-derivative of posi-
tion. The speed is |γ ±(t)|, a non-negative real number. When γ ±(t) ²= 0, the coordinates
(x±(t), y±(t)) of |γ ±(t)| determine a non-zero vector in the plane, which does indeed point
in a specific direction. What is often ignored is the caveat that when γ ±(t) = 0 this
becomes the zero vector, which does not point in a specific direction. This distinction is
important both geometrically and dynamically, and we discuss it further in Section 6.7.
We now consider integration of a complex function along a smooth path in C. In

this case, the Riemann integral of a complex function f can be approached by analogy
with the limit of the sum

∑
φ(sr)(tr − tr−1). We simply consider

∑
f (ζr)(zr − zr−1),

where ζr, zr are complex, and select ζr and zr along a path γ in the domain of f as in
Figure 6.1.
For this purpose we assume:

(i) f : D → C is continuous, where D is a domain; and
(ii) γ : [a,b]→ D is smooth.

For any partition P of [a,b], given by a = t0 < t1 < · · · < tn = b, and intermediate

points tr−1 ≤ sr ≤ tr , form the sum

S(P, f ,γ ) =

n³

r=1

f (sr)(γ (tr) − γ (tr−1))

Figure 6.1 A partition of a path inC.



6.2 Complex Integration Along a Smooth Path 115

Writing zr = γ (tr), ζr = γ (sr), this Riemann–Stieltjes sum becomes

S(P, f ,γ ) =

n³

r=1

f (ζr)(zr − zr−1)

which exhibits the direct analogy with the real case.
As in the real case, we rarely calculate an integral using this summation process. One

method is to reduce the calculation to two real integrals by taking real and imaginary

parts. If ψ : [a,b]→ R, let

ψ (t) = U(t)+ iV(t) (t ∈ [a, b])

and define ²

γ

ψ(t)dt =

² b

a

U(t)dt + i

² b

a

V (t)dt

With this convention we derive a complex version of Lemma 6.4:

THEOREM 6.6. For a continuous complex function f defined on a domain D, and a
smooth path γ : [a, b] →D,

²

γ

f =

² b

a

f (γ ((t))γ ±(t)dt (6.3)

Proof. Let γ (t) = x(t)+ iy(t) (t ∈ [a,b]) and f (z) = u(x, y)+ iv(x, y) (z = x+ iy ∈ D).

Denoting u(x(t), y(t)), v(x(t), y(t)), x±(t), y±(t) by u, v, x±, y± for short, our convention for
complex integrals gives

² b

a

f (γ ((t))γ
±
(t)dt =

² b

a

(u+ iv)(x
±
+ iy

±
)dt

=

² b

a

(ux
±
− vy

±
)+ i(vx

±
+ uy

±
)dt

=

² b

a

ux
±
dt −

² b

a

vy
±
dt + i

² b

a

vx
±
dt + i

² b

a

uy
±
dt

If we write f (γ (sr)) = ur + ivr and γ (tr) = xr + iyr , then

S(P, f ,γ ) =

n³

r=1

(ur + ivr)[(xr + iyr)− (xr−1 + iyr−1)]

=

n³

r=1

ur(xr − xr−1)−

n³

r=1

vr(yr − yr−1)

+ i

n³

r=1

vr(xr − xr−1) + i

n³

r=1

ur(yr − yr−1)

We now match the four integrals and four sums in pairs, and use Lemma 6.4. For
instance,

n³

r=1

ur(xr − xr−1) =

n³

r=1

u(x(sr), y(sr))(x(tr) − x(tr−1))



116 Integration

where both φ(t) = u(x(t), y(t)) and x±(t) are continuous on [a,b]. So given ε > 0, we can
find a partition P1(ε) such that for any partition P that is finer than P1(ε) we have

´́
´́
´

n³

r=1

ur(xr − xr−1) −

² b

a

ux
±
dt

´́
´́
´ <

ε

4

Similarly we find partitions P2(ε),P3(ε), P4(ε) such that all finer partitions P give sim-

ilar inequalities between corresponding pairs of integrals and sums. Taking Pε to have
division points all those of P1(ε), P2(ε),P3(ε),P4(ε), then whenever P is finer than Pε

all four inequalities hold. Therefore
´́
´́
´S(P, f ,γ )−

² b

a

f (γ ((t))γ ±(t)dt

´́
´́
´ <

ε

4
+
ε

4
+
ε

4
+
ε

4
= ε

Hence
²

γ

f =

² b

a

f (γ ((t))γ ±(t)dt

Example 6.7. f (z) = z2,γ (t) = t2 + it (t ∈ [0, 1]). See Figure 6.2.
²

γ

f =

² 1

0
f (γ (t))γ

±
(t)dt

=

² 1

0

(t2 + it)2(2t + i)dt

=

² 1

0

(t4 + 2it3 − t2)(2t + i)dt

=

² 1

0

(2t5 − 4t3)dt + i

² 1

0

(5t4 − t2)dt

= [ 13 t
6
− t4]10 + i[t5 − 1

3 t
3]10

= − 2
3
+

2
3
i

Figure 6.2 Path for Example 6.7.
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6.3 The Length of a Path

The length of a path is defined in terms of approximating polygons, as follows.

DEFIN IT ION 6.8. Given an arbitrary path γ : [a,b]→ C, take a partition P of [a,b]
given by a = t0 < t1 < · · · < tn = b, and calculate the length

L(γP) =

n³

r=1

|γ (tr) − γ (tr−1)|

of the approximating polygonal curve γP with vertices γ (t0),γ (t1), . . . ,γ (tn), Fig-
ure 6.3.

Figure 6.3 Length of a path as the supremum of the lengths of approximating polygons.

The length L(γ ) of γ is the supremum (least upper bound) of the lengths L(γP) over
all such approximating polygons.

The length of an arbitrary path need not be finite:

Example 6.9. Suppose γ (t) (t ∈ [0, 1]) is defined as follows. Let mn be the midpoint of
[1/(n+ 1), 1/n], so mn = (2n+ 1)/(2n(n+ 1)). Introduce a function λ where the graph
of y = λ(t) consists of two straight line segments from ( 1

n+1 , 0) to (mn,
1
n ) and then to

( 1n , 0). Define

γ (t) =

µ
t + iλ(t) (0 < t ≤ 1)

0 (t = 0)

The image of γ is drawn in Figure 6.4.

Figure 6.4 A path with infinite length.
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The length of this path from t =
1

n+1
to t =

1
n
exceeds 2

n
. Let P be the partition

0 < 1
n+1

< mn <
1
n
< · · · < 1

2
< m1 < 1. Then the length of the polygonal path

exceeds

2

n
+

2

n− 1
+ · · · +

2

1
= 2

¶
1+

1

2
+

1

3
+ · · · +

1

n

·

The latter is twice the harmonic series, so it increases without limit as n increases. There-
fore L(γ ) is infinite.

In this example, the path is not smooth. The next example shows that even if the path
is ‘nearly smooth’, its length can still be infinite.

Example 6.10. Consider the path

γ (t) =

µ
t+ it sin(π/t) (0 < t ≤ 1)

0 (t = 0)

as in Figure 6.5.

Figure 6.5 A nearly smooth path with infinite length.

A calculation shows that although

γ ±(t) = 1+ i(sin(π/t) + t cos(π/t))(−π/t2)

is continuous for 0 < t ≤ 1, the limit of

γ (t)− γ (0)

t
= 1+ i sin(π/t)

as t tends down to 0 does not exist. Hence γ ± is not continuous on the closed interval
[0, 1], so is not smooth on [0, 1] (though it is smooth on any subinterval [k, 1] with
0 < k ≤ 1).

We claim this path has infinite length. Let Pn be the partition

0 < 1/n< 1/(n− 1
2
) < 1/(n− 1) < · · · < 1/2 < 1/(2− 1

2
) < 1



6.3 The Length of a Path 119

Since

γ

¶
1

n

·
=

1

n
+ i

sinnπ

n
= 1/n

and

γ

¸
1

n− 1
2

¹
=

1

n− 1
2

+ i
sin(n−

1
2 )π

n− 1
2

=
1

n− 1
2

+ i
(−1)n−1

n− 1
2

the distance from γ (1/n) to γ (1/(n − 1
2
)) exceeds 1/(n− 1

2
), which exceeds 1/n. We

need only compute the lengths of alternate segments of the polygonal approximation γn

to γ given by Pn to find that

L(γn) >
1

n
+

1

n− 1
+ · · · + 1

which again increases without limit.

6.3.1 Integral Formula for the Length of Smooth Paths and Contours

When a path is smooth, its length is finite, and can be calculated by an integral:

PROPOSIT ION 6.11. The length of a smooth path γ : [a, b] → C is

L(γ ) =

² b

a

|γ ±(t)|dt (6.4)

and this is finite.

We prove this result below, but first we note that the integrand |γ ±(t)| is continuous on
[a,b], so the real integral

L=

² b

a

|γ ±(t)|dt

certainly exists, and is finite. We must show that L is the supremum of the lengths L(γP)
of approximating polygons γP.
Now L can be closely approximated by sums

S(P,φ) =

n³

r=1

|γ ±(sr)|(tr− tr−1)

where P is the partition a = t0 < t1 < · · · < tn = b, tr−1 < sr < tr , and φ(t) = |γ ±(t)|.
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The proof of Proposition 6.11 is greatly facilitated by:

LEMMA 6.12. With the preceding notation, given any ε > 0, there exists a partition
Qε such that for any partition P finer than Qε, the length L(γP) of the approximating
polygon corresponding to P satisfies

|S(P, φ) − L(γP)| < ε

Proof. By definition,

S(P,φ) =

n³

r=1

|γ ±(sr)|(tr − tr−1)

L(γP) =

n³

r=1

|γ (tr) − γ (tr−1)|

Writing γ (t) = x(t)+ iy(t), the Mean Value Theorem in real analysis gives

x(tr) − x(tr−1) = x
±(σr)(tr − tr−1) for some σr ∈ (tr−1 , tr)

y(tr)− y(tr−1) = y
±(τr)(tr − tr−1) for some τr ∈ (tr−1 , tr)

so

γ (tr) − γ (tr−1) = (x±(σr) + iy±(τr))(tr − tr−1)

Now x±, y± are continuous on [a, b], and from real analysis they are uniformly continuous
since [a, b] is a closed interval. This means that for any ε > 0 there exists δ > 0 such
that

s, t ∈ [a,b] and |s − t| < δ implies

|x
±
(s) − x

±
(t)| < ε/2(b− a) and |y

±
(s) − y

±
(t)| < ε/2(b− a)

(where the same δ works for all s, t).
If we choose Qε to be any partition such that each subinterval [tr−1 , tr] has length less

than δ , then any partition P finer than Qε has the same property. Because sr ,σr , τr ∈
[tr−1 , tr], they are all within distance δ of each other, so

| |γ ±(sr)|(tr − tr−1) − |γ (tr)− γ (tr−1)| |
= | |γ ±(sr)| − |x±(σr)+ iy

±
(τr)| | (tr − tr−1)

≤ |(x±(sr) + iy±(sr))− (x±(σr)+ iy±(τr))| (tr − tr−1)

≤ (|x±(sr) − x
±(σr)| + |y±(sr) − y±(τr)|)(tr − tr−1)

< (
ε

2(b− a
+

ε

2(b− a
)(tr − tr−1)

= ε(tr − tr−1)/(b− a)

where in the third line we use property (1.12) of the modulus.

Thus

|S(P,φ)− L(γP)| ≤
n³

r=1

| |γ ±(sr)|(tr − tr−1)− |γ (tr) − γ (tr−1)| |

<

n³

r=1

ε

b− a
(tr − tr−1)
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=
ε

b− a

n³

r=1

(tr − tr−1)

= ε

as required.

We are now prepared for the following:

Proof of Proposition 6.11. Let L(γ ) be as in (6.4). By the definition of the Riemann
integral, there exists a partition P such that for any partition P finer than Pε,

|S(P,φ)− L| < ε (6.5)

Adding more division points to Pε as necessary to obtain a finer partition Qε with each
subinterval of length less than δ, then for P finer thanQε , Lemma 6.12 gives

|S(P, φ) − L(γP)| < ε (6.6)

Combining this with (6.5) gives

L− 2ε < L(γP) < L+ 2ε (6.7)

Thus for any positive k we can find an approximating polygon γP with

L− k < L(γP) (6.8)

Given any partition Q of [a,b] with approximating polygon κ , the addition of further
vertices to κ can only increase its length, by the triangle inequality. Thus if P is finer
than Q then L(κ) ≤ L(γP). We choose P finer than Qε so that (6.7) holds; then

L(κ) ≤ L(γP) < L+ 2ε

But ε is any positive number, so for any approximating polygon κ ,

L(κ) ≤ L (6.9)

The inequalities (6.8) and (6.9) exhibit L as the supremum of the lengths of all
approximating polygons, completing the proof.

Example 6.13. The standard straight line path γ = [z1, z2]

γ (t) = z1(1− t) + z2t (t ∈ [0, 1])

has length

L(γ ) =

² 1

0

|γ ±(t)|dt =

² 1

0

|z2 − z1|dt = |z2 − z1|

as expected.

Example 6.14. The circle S(t) = z0 + re
it (t ∈ [0, 2π]), centre z0 and radius r > 0, has

length

L(S) =

² 2π

0

|ireit| =
² 2π

0

rdt = 2π r
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6.4 If You Took the Short Cut . . .

Some readers will have read the previous three sections, and some will not. For the latter,
we now give some basic definitions that are motivated by the previous three sections:

DEFIN IT ION 6.15. A path γ : [a, b] → C is smooth if γ ± exists and is continuous on
the closed interval [a,b].
If D is a domain, the integral of a continuous function f : D→ C along the path γ is

²

γ

f =

² b

a

f (γ (t))γ ±(t)dt (6.10)

The length of γ is

L(γ ) =

² b

a

|γ
±
(t)|dt (6.11)

A comment on (6.10) and (6.11) is in order to explain what they mean. The integrands
f (γ (t))γ ±(t) and |γ ±(t)| are both continuous. The latter is real; the former may be written
in real and imaginary parts as f (γ (t))γ ±(t) = U(t) + iV (t) and the integral

±
γ
f can then

be calculated using two real integrals:
²

γ

f =

² b

a

U(t)dt + i

² b

a

V (t)dt

Since all integrands involved are continuous, the real integrals all exist.
At this stage, readers who made either choice are now equipped to proceed to the rest

of the book. If you took the short cut, take a quick look at Examples 6.13 and 6.14 to
convince yourself that the formula defining length makes sense for lines and circles.

6.5 Further Properties of Lengths

Recall from Definition 2.27 that paths can be added together if their start and end points
match up correctly. Using approximating polygons, it is easy to prove that the length
function L is additive:

PROPOSIT ION 6.16. If γ = γ1 + · · · + γn and L(γr) exists for 1≤ r ≤ n, then

L(γ ) = L(γ1)+ · · · + L(γn)

It is important to understand that the length of a path need not be the same as the
length of its image curve. In particular, this happens whenever the path ‘doubles back
on itself’, as in the following example.

Example 6.17. Let σ : [−2, 2] → C be any smooth path. Let ρ : [−2, 2] → [−2, 2]
be given by ρ(t) = t3 − 3t, which is a smooth map, and let γ = σ ◦ ρ. Then it can
be shown, using (6.4), that L(γ ) = 3L(σ ). The geometric significance of this result is
straightforward: as t increases from −2 to 2, the cubic t3 − 3t increases from −2 to 2,
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then decreases from 2 to−2, and finally increases from−2 to 2 again. So the path traces
the curve three times.

Next, we consider how a change of parameter affects the length of a smooth path.

DEFIN IT ION 6.18. Smooth paths γ : [a,b]→ C, λ : [c,d] → C with the same image

curve C are smoothly equivalent parametrisations of C if there is a smooth function
ρ : [a,b] → [c, d] with non-zero derivative ρ±(t) ²= 0 for t ∈ [a, b], where ρ(a) = c,

ρ(b) = d, and γ = λ ◦ ρ.

This relationship is an equivalence relation, because ρ−1 exists, is smooth, and
also has non-zero derivative, by the inverse function theorem. A smoothly equivalent
parametrisation can be imagined as tracing the same curve in the same direction but at
different speeds.

PROPOSIT ION 6.19. If two smooth paths γ : [a, b] → C, λ : [c, d] → C are

smoothly equivalent parametrisations of the same curve C, then they have the same
length: L(γ ) = L(λ).

Proof. We have γ = λ ◦ρ where ρ : [a,b]→ [c,d] is a strictly increasing real function
with continuous derivative ρ± on [a,b]. Therefore ρ±(t) ≥ 0, so ρ±(t) = |ρ±(t)|. Let
s = ρ(t). Then as t increases from a to b, s increases from c to d and we can substitute
ds = ρ±(t)dt in the integral. The length of the path γ is therefore

L(γ ) =

² b

a

|γ ±(t)|dt

=

² b

a

|(λ ◦ ρ )±(t)|dt

=

² b

a

|(λ±(ρ(t))||ρ±(t)|dt

=

² b

a

|(λ±(ρ(t))|ρ±(t)dt

=

² b

a

|λ±(s)|ds = L(λ)

6.5.1 Lengths of More General Paths

You may be wondering why we require γ to be smooth in the definition of length in
Definition 6.15? Proposition 6.16 applies to contours made from several smooth pieces,
which need not fit together smoothly where they join, so paths that are not smooth

can have meaningful lengths. Obviously, Definition 6.15 cannot be used for continuous
paths, because it involves the derivative of γ . But the definition ‘supremum of lengths
of all approximating polygons’, which occurs in the alternative treatment of Section 6.3,
makes sense for any path, without assuming smoothness. However, this definition has its
own awkward features. Sometimes it goes wrong in the mild sense that the entire path
has infinite length, as in Examples 6.9 and 6.10. However, it gets much worse. Using the
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‘approximating polygon’ definition for length, there are continuous paths γ : [a, b]→ C

with the disturbing property that the length of any segment of the path, between points
c < d in [a, b], is infinite.
In fact, we have already met just such a path: the graph of the blancmange function,

Figure 4.3. Using dyadic rationals, it is straightforward to construct a sequence of par-
titions of [c,d] such that the corresponding polygons have lengths tending to infinity.
In fact, it is enough to do this for the graph of the blancmange function on the inter-
val [0, 1], because we have already pointed out that this graph contains arbitrarily small
copies of the graph of the blancmange function, and a small number times infinity is
still infinity. These copies are usually distorted by an affine transformation, but such a
distortion keeps the length infinite. Similar remarks apply to space-filling curves, and to
standard fractals such as the snowflake curve, Mandelbrot [13], and Falconer [4].
In other words, a path that is continuous but not smooth may not have a meaningful

length. This is probably counterintuitive, because we have been trained from an early
age to assume that every linear object does have a length. The ancient Greeks worried
about the length of the circumference of a circle without ever defining what they were
worrying about. It seemed obvious to them that any arc of a circle must have a length;
their main aim was to find out what that length is. To do so, they tacitly assumed several
plausible properties, such as finding the length by using polygons to approximate the cir-
cumference. Eventually mathematicians tightened up the logic, leading to Definition 6.8
above, and understood what can go wrong.
To complete the story, smoothness is not actually necessary for a path or curve to have

a well-defined length. There is a more general notion of a rectifiable curve, for which the
‘approximating polygon’ definition is entirely satisfactory. However, the smooth case is
all we need in this book.

6.6 Regular Paths and Curves

Just as we distinguish between a path γ and its image curve, we must distinguish
between the derivative γ ±(t) and a tangent line to the curve. The derivative can be inter-
preted as the velocity vector at time t for a point γ (t) moving along the curve. If γ ±(t) ²= 0
it defines a tangent direction, hence a tangent line to the curve. When γ ±(t) = 0 it does
not defines a tangent direction, so the curve may not have a tangent line. Section 6.7
shows some of the things that can then happen.
First, some standard terminology:

DEFIN IT ION 6.20. Let γ : [a, b]→ C be a smooth path.
If t0 ∈ [a,b] and γ ±(t0) ²= 0, then t0 is a regular point of γ .
If t0 ∈ [a,b] and γ ±(t0) = 0, then t0 is a singular point of γ .

When the image curve has a well-defined tangent line, it looks smooth: see Proposi-
tion 6.22 below.
The above discussion leads naturally to a special type of path or curve that will be

useful as we proceed, to relate the abstract theory to geometric intuition:
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Figure 6.6 Tangents to a smooth path.

DEFIN IT ION 6.21. A regular path is a smooth path γ : [a, c]→ C such that γ ±(t) ²= 0

for all t ∈ [a,b].

That is, every point on the path is a regular point.
A regular curve is the image of a regular path.

If γ is regular, then by Proposition 4.18 a point on the tangent at γ (t) is of the form
γ (t)+ hγ ±(t) for any h ∈ R, Figure 6.6.
The standard paths L(t) (line) and C(t) (circle) in Section 2.4 are regular.
In Figure 6.6 the tangent line at γ (t) is a good approximation to the curve given by the

image of γ , near that point. To formalise this idea, we compare the path γ (t) for t near
some point t0 ∈ [a,b] with the corresponding tangent line. We can think of the tangent
line as a path τ in its own right, defined by

τ(t0 + h) = γ (t0)+ hγ
±
(t0) (h ∈ R) (6.12)

and compare it with
γ (t0 + h) (t near t0)

We now show that when h is small, these two paths, treating h as a parameter, are very
close together for any given choice of h:

PROPOSIT ION 6.22. Let γ : [a,b] → C be a regular path. As h→ 0, the expression
1

h
[γ (t0 + h)− τ(t0 + h)]

tends to 0.

Before giving the simple proof, we interpret this result: it says that for sufficiently
small h, the difference between the path γ and the tangent path τ tends to zero faster

than h does.

Proof. Since γ is differentiable at t0 ,

lim
h→0

γ (t0 + h) − γ (t0)

h
= γ

±
(t0)
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Rewrite this as

lim
h→0

1

h
[γ (t0 + h)− (γ (t0)+ hγ

±
(t0))] = 0

By (6.12) this is the same as

lim
h→0

1

h
[γ (t0+ h) − τ(t0 + h)] = 0

The proof does not use γ ±(t0) ²= 0; that is, the limit is still zero even when there is a
singularity at t0. However, in that case τ (t0 + h) = γ (t0) for all h ∈ R. That is, τ does

not define a tangent line. So the result tells us nothing about the shape of the image of γ
near t0 .

6.6.1 Parametrisation by Arc Length

Proposition 6.22 is a formal statement of the intuitive idea that a regular curve looks
smooth near any point. It has a continuously turning tangent and a well-defined finite
length. These properties are inherited by subpaths, leading to:

DEFIN IT ION 6.23. Let γ : [a,b] → C be a regular path, with image curve C. Let
t0 , t1 ∈ [a,b] with t0 ≤ t1, and let γ (t0) = c,γ (t1) = d. Then the arc length LC(c, d)
from c to d in C is the length of γ |[t0,t1]; that is,

LC(c,d) =

² t1

t0

|γ
±
(t)| dt

We now prove that a regular curve can be smoothly reparametrised so that the param-

eter t is arc length, or a constant multiple of arc length if that is more convenient. Let
the length of γ be L. Define λ : [a,b]→ [0,L] by

λ(s) = LC(a, s) =

² s

a

|γ ±(t)|dt

Then

λ±(t) = |γ ±(t)| ² = 0

so λ is a strictly increasing function on [a, b] with a continuous derivative λ± on [a,b],
where λ(a) = 0, λ(b) = L. It is regular since λ±(t) ²= 0. It therefore has a strictly
increasing inverse function ρ = λ−1 . Now ρ : [0,L] → [a,b] and has continuous
derivative

ρ±(t) = 1/λ±(t) ²= 0

for a< t < b, so ρ is also regular.
The path

τ = γ ◦ ρ : [0,L]→ C

is regular, and

τ(λ(t)) = γ ◦ ρ ◦ λ(t) = γ (t)
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so τ is a reparametrisation of γ , with parameter λ(t) = LC(a, t). So τ reparametrises the
image curve C of γ by arc length. Moreover,

|τ
±
(t)| = |γ ±(t)||ρ±(t)| = |γ ±(t)|/|λ±(t)| = |γ ±(t)|/|γ ±(t)| = 1

So as t varies, τ (t) moves along the path with unit speed.
Multiplying the parameter by a non-zero constant scales the speed 1 to any non-zero

constant speed, corresponding to a parameter that is a constant multiple of arc length.
Any curve parametrised by arc length or such a multiple is regular.

6.7 Regular and Singular Points

Before tackling the intricacies of contour integration, we explain why the cases γ ±(t) ²= 0

and γ ±(t) = 0 differ significantly.
Near a regular point, the image of γ is a smooth curve in the geometric sense that it

has a well-defined tangent direction (and this varies continuously). The curve may cross
itself, but each separate segment near the crossing looks smooth.

Near a singular point, this may not be true. Sometimes there is a sensible, indeed
visible, tangent direction, but sometimes there is not. The geometry of γ (t) when t is

near a singular point t0 is highly sensitive to the precise behaviour of γ (t) when t is near
t0 . We give a series of simple examples to illustrate some of the possibilities.

Figure 6.7 Examples of possible behaviour of a smooth path near a singular point. Left: Cusp.
Right: Right-angled corner.

Example 6.24. Suppose that γ : [−1, 1] → C where γ (t) = t2 + it3. The derivative is
γ (t) = 2t+3it2 , which is non-zero except at t = 0. The image is a semicubical parabola
with a cusp at the origin, Figure 6.7 (left). Everywhere else, the image is a smooth curve.
The image has a natural tangent line at the cusp point, along the real axis, because this is
the limiting direction of tangents near the origin. However, the velocity vector reverses
direction as it passes through the origin.
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To make sense of what is happening at a singular point we compare it with the real
case. In real analysis the graph of a function f : R → R consists of the points (x, f (x)) ∈
R2 . If f is smooth, the graph has a well-defined tangent – even at a critical point where
f ±(x) = 0. However, if we imagine the point y = f (x) moving as x increases steadily, y
becomes stationary at any critical point. (Indeed, another term is stationary point.) The
tangent at a critical point is horizontal. This is the same as the direction in which a point
(x, f (x)) on the graph is projected to obtain the image f (x). So the tangent projects to a
single point.
The same kind of behaviour is happening at the cusp, but now γ is a hybrid function

with a graph γ : [−1, 1]→ C in coordinate form (t, t2 + it3) ∈ R×C. This is drawn in
the upper left part of Figure 6.8, represented in three-dimensional real space as (t, x, y) =
(t, t2, t3), where t, x, y all lie between−1 and+1. Projection onto the vertical (x, y)-plane

project onto

vertical (x, y)-plane

x = t2

x = t2

x = t2

y=t
3

y = t3

y = t3

0.5

0.5

tangent

–1

project

onto (t, x)-

3D (t, x, y)-space

–1

–1

–0.5–0.5

–0.5

0.5

t

t t

(x, y)-plane

(t, y)-plane(t, x)-plane

project sideways

onto (t, y)-planedown

plane

Figure 6.8 Example 6.24 represented in terms of the graph of the graph of the function
γ (t) = t2 + it3 in R× C pictured in R3 .
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reveals the semicubical parabola (t2, t3); projection down onto the (t, x)-plane gives the
parabola (t, x2); and sideways projection onto the (t, y)-plane gives the cubic curve (t, x3).
The tangent at the origin is in the direction (1, 2t, 3t2) = (1, 0, 0), which points along the
t-axis perpendicular to the complex plane and its projection onto the complex plane has
length zero.

Example 6.25. More surprisingly, the image can have a sharp corner, contrary to the
intuition that it ought to at least look smooth.

Define φ : R→ R by

φ(t) =
µ

0 (t ≤ 0)

t2 (t > 0)

This function is continuously differentiable because both 0 and t2 have the same

derivative, mainly 0, when t = 0.

Now define γ : [−1, 1]→ C by

γ (t) = φ(t)+ iφ(−t)

The image is then as shown in Figure 6.7 (right).
The definition of φ can be modified to make γ infinitely differentiable, while retaining

the right-angled corner. Just change t2 to e−1/t as in (4.8).

Next we compare two different cases where the image of γ is a spiral.

Example 6.26. Suppose that

γ (t) =
µ

0 (t = 0)

tei/t (t > 0)

Then γ : [0, 1] → C has a spiral image, Figure 6.9 (left). In this case, γ is not
continuously differentiable. Indeed as t→ 0 from above, we have

γ
±
(t) = e

i/t + t.
i

t
e
i/t = (1+ i)e

i/t

This goes round and round the circle of radius |1 + i| =
√
2 at an ever-increasing rate,

so it does not tend to a limit as t→ 0. The one-sided derivative at t = 0 is not defined,
let alone continuous.

Contrast this spiral with the following closely related one:

Example 6.27. Suppose that

γ (t) =
µ

0 (t = 0)

t2ei/t (t > 0)

Then γ : [0, 1] → C has a spiral image, Figure 6.9 (right). The spiral is much tighter
than the previous example, and now γ is continuously differentiable. Indeed as t → 0
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Figure 6.9 Left: A spiral path that is not smooth. Right: A smooth spiral path.

from above, we have

γ
±
(t) = (2+ i)te

i/t

which tends to 0 as t→ 0. The one-sided derivative at t = 0 is defined, and the derivative
is continuous there. As it happens, it is zero.

We now consider the lengths of the spiral paths in Examples 6.26 and 6.27, which can
be estimated by bounding the lengths of successive turns through 2π . In Example 6.26,
turn n has length lying between two constant multiples of 1/n. So the total length lies
between the same constant multiples of

∑
n 1/n, the harmonic series, which is infinite.

In Example 6.27, turn n has length lying between two constant multiples of 1/n2. Since
∑

n 1/n
2 is finite, this spiral has finite length.

These results are consistent with the lack of smoothness of Example 6.26 (indeed,
since its length is infinite Proposition 6.11 implies that it cannot be smooth), and the
smoothness of Example 6.27, which implies that its length must be finite.

6.8 Contour Integration

For readers who took the Riemann integral route, Section 6.2 defines the notion of a
smooth path and deduces a formula for the integral along such a path. Those who opted
for the short cut should refer to Definition 6.15. For all readers, we now generalise the
notion of integration to allow paths made up of a finite number of smooth pieces:

DEFIN IT ION 6.28. Using the notation of Section 2.4, a contour is a path of the form

γ = γ1 + · · · + γn

where γ1, . . . ,γn are smooth paths such that the final point of γr coincides with the initial
point of γr+1 for r = 1, . . . ,n− 1.
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Figure 6.10 The contour defined in Example 6.29.

Example 6.29. Let

γ1(t) = t (t ∈ [ε, R])

γ2(t) = R(cos t + i sin t) (t ∈ [0,π ])

γ3(t) = t (t ∈ [−R, ε])

γ4(t) = ε(− cos t + i sin t) (t ∈ [0,π ])

Then γ = γ1 + γ2 + γ3 + γ4 is the (closed) contour drawn in Figure 6.10.

6.8.1 Definition of Contour Integral

Integration along a contour is an easy extension of integration along a smooth path:

DEFIN IT ION 6.30. If D is a domain, f : D→ C is continuous, and γ = γ1 + · · · + γn

is a contour (so all γr are smooth), then the contour integral of f along γ is

²

γ

f =

²

γ1

f + · · · +
²

γn

f

and

L(γ ) = L(γ1)+ · · · + L(γn)

It is obvious that if a smooth path σ is subdivided as

σ = σ1 + σ2

then ²

σ

f =

²

σ1

f +

²

σ2

f

so further subdivisions of the contours γ1 , . . . , γn in the above definitions will not affect
the values of the integrals. The contour integrals are therefore well-defined.
The following standard properties hold, analogous to the real case:
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PROPOSIT ION 6.31.
²

γ1+γ2

f =

²

γ1

f +

²

γ2

f (6.13)

²

γ

( f1 + f2) =

²

γ

f1 +

²

γ

f2 (6.14)

²

γ

cf = c

²

γ

f (c ∈ C) (6.15)

²

−γ

f = −
²

γ

f (6.16)

Proof. Equation (6.13) follows trivially from the definitions. The proofs of (6.14)
and (6.15) depend on whether the reader has read Sections 6.1–6.3. If so, then
Section 6.2 implies that

S(P, f1 + f2, γ ) = S(P, f1, γ )+ S(P, f2 ,γ )

S(P, cf , γ ) = cS(P, f ,γ )

for any partition P, which imply (6.14) and (6.15).
The reader who started from Section 6.8 can verify these formulas using known

properties of real integrals, as follows.
First, it is sufficient to verify them for a single smooth path. To prove (6.14), observe

that

²

γ

( f1+ f2) =

² b

a

( f1(γ (t))+ f2(γ (t))γ
±(t)dt

=

² b

a

f1(γ (t))γ
±
(t)dt +

² b

a

f2(γ (t))γ
±
(t)dt

=

²

γ1

f +

²

γ2

f

using the additivity property for real integrals on the real and imaginary parts.
The proof of (6.15) is slightly longer (a minor penalty for skipping Sections 6.1–6.3),

because we must separate everything into real and imaginary parts. Let c = α + iβ ,

f (γ (t))γ ±(t) = U(t)+ iV (t). Then
²

γ

cf =

² b

a

(α + iβ)(U(t) + iV (t))dt

=

² b

a

([αU(T )− βV (t)] + i[αV(t)+ βU(t)])dt

=

² b

a

[αU(T )− βV (t)]dt + i

² b

a

[αV(t)+ βU(t)])dt

= α

² b

a

U(T )dt − β

² b

a

V(t)dt + iα

² b

a

V(t)dt + iβ

² b

a

U(t)dt
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= (α+ iβ)

² b

a

(U(t)+ iV(t))dt

= c

²

γ

f

using standard properties of real integrals.
Finally, we prove (6.16). If γ : [a, b] → D is a contour, then the opposite path

−γ : [a, b] → D, defined by

−γ (t) = γ (a+ b− t) (t ∈ [a,b])

is also a contour. Now
²

−γ

f =

² b

a

f (γ (a+ b− t))
d

dt
γ (a+ b− t)dt

= −
² b

a

f (γ (a+ b− t))γ ±(a+ b− t)dt

Substituting s = a+ b− t this becomes

−

² a

b

f (γ (s))γ ±(s)(−ds)

= −
² b

a

f (γ (s))γ ±(s)(ds)

= −
²

γ

f

Therefore ²

−γ

f = −
²

γ

f

6.9 The Fundamental Theorem of Contour Integration

Integrals of complex functions are only occasionally computed by breaking them down
into real and imaginary parts and calculating two real integrals as in the previous section.
This technique is sometimes needed, but a far more efficient method is available for

±
γ f

if we can find an antiderivative of f . This concept is so important that we give it a formal

definition:

DEFIN IT ION 6.32. Let D be a domain. An antiderivative for a function f : D → C is

a function F : D→ C such that F± = f .

An antiderivative, if it exists, is unique up to an added constant, for if F± = G± = f in

a domain, then (F −G)± = 0 so F − G is constant by Theorem 4.14. If we can find an
antiderivative, then the integral can be computed immediately using:
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THEOREM 6.33 (Fundamental Theorem of Contour Integration). If f : D → C is

continuous, F : D → C is an antiderivative of f , and γ is a contour in D from z0 to z1 ,
then

²

γ

f = F(z1) − F(z0)

Proof. Let w(t) = u(t) + iv(t),W(t) = U(t) + iV(t) for t ∈ [a,b], where u, v,U,V are

real. Then W± = w if and only ifU ± = u,V ± = v, and then
² b

a

w(t)dt =

² b

a

u(t)dt + i

² b

a

v(t)dt

= U(b)− U(a) + iV(b) − iV (a)

= W(b) −W(a)

Let w(t) = f (γ (t))γ ±(t). Since F± = f ,

w
±
(t) = F

±
(γ (t))γ

±
(t) = W

±
(t)

where W(t) = F(γ (t)). Therefore
²

γ

f =

² b

a

w(t)dt = W(b)−W(a)

= F(γ (b)) − F(γ (a)) = F(z1)− F(z0)

One remarkable feature of this result is that, in these circumstances, the integral does
not depend on the path γ , only on its end points. In contrast, we show in Section 6.10
that the integral may depend on the path when the conditions of Theorem 6.33 fail to
hold.

Example 6.34. If f (z) = z2 and γ is any contour from z0 = 0 to z1 = 1 + i, then
F(z) = 1

3
z3 is an antiderivative of f , and

²

γ

z2dz = 1
3
(z31 − z30) =

1
3
(1+ i)3 = 2

3
+

2
3
i

This example gives a visibly easier calculation than that performed at the end of
Section 6.2 for the particular contour γ (t) = t2 + it (t ∈ [0, 1]).
However, any euphoria we feel over this phenomenon must be tempered with the

realisation that, unlike the real case where Theorem 6.2 (iii) tells us that a continuous
function always has an antiderivative, in the complex case there are continuous func-
tions without antiderivatives. Indeed, as we prove in Chapter 10, any function that is
differentiable once in a domain is differentiable as many times as we wish. Now, any
antiderivative F must be differentiable once, so it is differentiable twice. Therefore its
derivative f = F± must be differentiable. So no non-differentiable function f has an
antiderivative.
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Example 6.35. We know that f (z) = |z|2 is differentiable only at the origin, so it is
useless to search for an antiderivative when integrating this f – for example along the
path γ (t) = t2 + it (t ∈ [0, 1]). In this case, we return to the basic formula

²

γ

|z|2dz =

² 1

0

(t4 + t2)(2t + i)dt

=

² 1

0

(2t5 + 2t3)dt + i

² 1

0

(t4 + t2)dt

= [ 1
3
t6 + 1

2
t4]10 + i[1

5
t5 + 1

3
t3]10

= 5
6
+ 8

15
i

Fortunately, many functions do have antiderivatives. For instance, by Corollary 4.5,
any polynomial

p(z) = a0 + a1z+ · · · + anz
n

has antiderivative
p(z) = a0z+

1
2
a1z+ · · · + 1

n+1
anz

n+1

More generally, a power series has an antiderivative everywhere inside its disc of
convergence:

THEOREM 6.36. If f (z) =
∑∞

n=0 an(z − z0)
n converges for |z− z0| < R, then

F(z) =

∞³

n=0

an

n+ 1
(z− z0)

n+1

also converges for |z − z0| < R, and F ± = f .

Proof. It is sufficient to show that F(z) converges for |z − z0| < R, for then we may

differentiate term by term by Theorem 4.20 to obtain F± = f .

We know that the power series
∑
∞
n=0 an(z−z0)

n converges absolutely for |z−z0| < R,

by Theorem 3.19. For each n, either an = 0 or
|an(z− z0)

n/(n+ 1)|

|an(z − z0)
n|

=
|z − z0|

n+ 1

tends to zero as n→ ∞, so by the comparison test
∑∞

n=0
an
n+1

(z−z0)
n+1 converges.

If f (z) =
∑
∞
n=0 an(z− z0)

n has disc of convergence D, then for any contour γ in D

from z1 to z2 ,
²

γ

f =

∞³

n=0

an(z2 − z0)
n+1

n+ 1
−

∞³

n=0

an(z1 − z0)
n+1

n+ 1

In particular, for any contour γ in D from z0 to z,

²

γ

f =

∞³

n=0

an(z− z0)
n+1

n+ 1
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6.10 An Integral that Depends on the Path

The Fundamental Theorem tells us that if a differentiable function f has an antiderivative
throughout its domain D, then the integral

±
γ f is independent of the choice of path. This

applies to zn for any integer n ²= −1, with antiderivative zn+1/(n + 1) in the domain

C\{0}. It applies to 1/z2 , 1/z3, . . . but fails for 1/z, as we now show using formula (6.10).

Example 6.37. Consider the problem of integrating 1/z between −1 and 1. The path
along the real axis passes through the origin, where 1/z is not defined, so we avoid this
by choosing a semicircular path.
If the semicircle lies above the real axis (where im z ≥ 0) we can choose

γ1(t) = e−it (t ∈ [π , 2π ])

noting that e−iπ = −1, e−i2π = 1 and the −t makes the path run clockwise. Now
²

γ1

1

z
dz =

² 2π

π

1

γ1(t)
γ ±1(t) dt

=

² 2π

π

1

e−it
(−ie−it) dt

=

² 2π

π

−i dt

= [−it]
2π
π

= −i(2π − π )

= −iπ

All very well, but we could equally sensibly choose the semicircle that lies below the
real axis (where im z ≤ 0). Now

γ2(t) = eit (t ∈ [π , 2π])

noting that eiπ = −1, ei2π = 1 and the +t makes the path run anticlockwise. A very
similar calculation yields

²

γ2

1

z
dz =

² 2π

π

1

γ2(t)
γ
±
2(t) dt

=

² 2π

π

1

eit
(ie

it
) dt

=

² 2π

π

i dt

= [it]2ππ

= i(2π − π)

= iπ

which is slightly different.
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At first it might appear that we made a mistake – it’s easy to get a sign wrong – but
the second integral is clearly the complex conjugate of the first, because everything is
reflected in the real axis. Since neither is real, they cannot be equal.
This example does not contradict Theorem 6.33 because 1/z does not have an

antiderivative in C\{0}. The obvious candidate is the logarithm, but by Section 5.7
exp is periodic over C hence not one-one. Therefore any inverse ‘function’ to exp
must be multivalued, as explained in detail in Section 7.3. So the logarithm is not an
antiderivative over the whole of the domain.

In Chapter 8 we show that we get a different answer here because the point z = 0,

where 1/z is undefined, lies inside the region bounded by γ1 and γ2 . This behaviour is
closely connected to the multivalued nature of the complex logarithm. It has surprisingly
profound implications, explored in Chapters 8–12.
At any rate, this example should counteract any feeling that complex integrals are

always independent of the path, Theorem 6.33 notwithstanding.

6.11 The Gamma Function

So far the special complex functions that we have encountered are all extensions to C of

familiar real functions: polynomials, powers, trigonometric functions, the exponential
and the logarithm. In this section we briefly discuss a less familiar function, the gamma
function ±(z). This also began as a real function and was later extended to the complex

case. It has important applications, but we restrict attention to defining the function and
establishing a few basic properties. It will play a key role in Chapter 17 when we sketch
connections between complex analysis and number theory, culminating in the Riemann

Hypothesis.

The definition of the gamma function goes back to Euler, who initially defined it as
the infinite product

±(z) =
1

z

∞º

n=1

»¶
1+

1

n

·z ¼
1+

z

n

½−1¾

This infinite product converges for all z ∈ C\{0,−1,−2 , . . .}. It defines a differentiable
function on that domain, but we lack the techniques needed to prove this. Instead, we
use another formula due to Euler, who showed that when re z > 0 this is equal to the
integral

±(z) =

² ∞

0

tz−1e−tdt (6.17)

We take this as our definition, in order to illustrate complex integration. Here we define
² ∞

0
f = lim

a→∞

²

[0,a]
f

so the interval [0,∞] is interpreted as the non-negative real axis. It is straightforward
to verify that (6.17) converges, because the factor e−t tends to zero rapidly. With this
definition, the formula (6.17) defines ±(z) only for z in the positive half-plane
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C
+ = {z ∈ C : rez > 0}

We establish some basic properties of ±(z) using methods from complex integration.
First, we prove that the usual method of integration by parts generalises from real

analysis to the complex case:

THEOREM 6.38 (Integration by Parts). Let f ,g : D → C be differentiable functions on
the domain D. Then for any path γ : [a, b] → D we have:

²

γ

fg
±
= [fg]

b
a−

²

γ

f
±
g (6.18)

Proof. By Proposition 4.4 (iii) we have

(fg)± = f ±g+ fg±

so

fg± = (fg)± − f ±g

Now integrate both sides over γ and use the Fundamental Theorem of Contour
Integration, Theorem 6.33.

Now we prove the basic functional equation for the gamma function:

THEOREM 6.39. If z ∈ C+ then

±(z + 1) = z±(z) ±(1) = 1 (6.19)

Proof. By (6.17), noting that z+ 1 ∈ C+, we have

±(z+ 1) =

²
∞

0

tze−tdt

Now use integration by parts to rewrite this as

±(z+ 1) = [−tze−t]∞0 +

²
∞

0

ztz−1e−tdt

= lim
x→∞

(−x
z
e
−x
− (0e

0
) + z

² ∞

0
t
z−1

e
−t
dt

= 0+ z

²
∞

0

tz−1e−tdt

= z±(z)

To calculate ±(1), observe that

±(1) =

² ∞

0
t
1−1

e
−t
dt

= [−e−t]∞0

= 0− (−1)

= 1

By induction, this formula leads immediately to a curious result:
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COROLLARY 6.40. If n ∈ N then

±(n) = (n− 1)!

In effect, the gamma function is a sensible way to define factorials for complex

numbers, in such a manner that the basic formula (n + 1)! = (n + 1)n! continues to
hold.

6.11.1 Known Properties of the Gamma Function

We record (but do not prove) several other properties of the gamma function. One is
Euler’s reflection formula

±(1− z)±(z) =
π

sin πz

which is a consequence of his infinite product definition and a standard infinite product
for the sine. Setting z = 1

2 we obtain

(±( 1
2
))2 = π

sin π/2
= π

Therefore

±( 12 ) =
√
π

The duplication formula states that

±(z)±(z+ 1
2 ) = 21−2z

√
π±(2z)

The derivative of the gamma function is obtained from the integral formula (6.17) by a
technique called ‘differentiating under the integral sign’, and leads to

± ±(z) =
² ∞

0

tz−1e−t log t dt

(see Chapter 7 for the complex logarithm). This also proves that ± is a differentiable
function in C+.
Let γ be Euler’s constant, defined by

γ = lim
n→∞

¶
1+ 1

2
+ 1

3
+ · · · + 1

n
− log n

·
∼ 0.577 216

Then

±
±
(1) = −γ

Weierstrass found another infinite product that works for all z ∈ C \ {0,−1 ,−2, . . .}:

1

±(z)
= ze

γz

∞º

n=1

¿¼
1+

z

n

½
e
−z/n

À

It is also possible to successively extend Euler’s formula to re z > −1, re z > −2, and
so on, using (6.19) in the form

±(z− 1)=
±(z)

z − 1
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Figure 6.11 Graphs of (from left to right) the absolute value, real part, and imaginary part of the
gamma function. Here x runs horizontally, y runs into the page, and the value of the function
concerned runs vertically.

provided z − 1 ²= 0. This defines ± on the whole of the complex plane, except for
the points {0,−1,−2 , . . .}, and shows that the extended function is differentiable on
its domain. It also explains why negative integers and zero must be excluded from the
domain, because ± would become infinite there; that is, have a pole. This procedure is
an example of analytic continuation, which will be introduced in Chapter 14.
Graphs of |±(z)|, re±(z), and im±(z) are shown in Figure 6.11, for this extended

domain.

The gamma function, and its poles, turned out to be an important ingredient in a rad-
ical new development in complex analysis: an unexpected link with number theory. In
the hands of Riemann and his contemporaries, this led to major advances in number the-
ory, and a conjecture that remains one of the biggest unsolved problems in mathematics,
the Riemann Hypothesis (see Chapter 17).

6.12 The Estimation Lemma

We now return to more general questions about complex integration, and prove a very
useful technical result. Some results in mathematics are servants of the theory, of little
intrinsic interest in themselves, perhaps even a little dull, yet quietly figuring in impor-
tant decisions all the time. ‘Always a lemma, never a theorem’. One such result is the
lemma we are about to prove. It is a simple idea, giving an upper bound for the size of
an integral |

±
γ
f | in terms of an upper bound on | f | and the length of γ , but it arises

time and again in the theory, applying subtle pressure at critical points in the proofs of
important theorems. Perhaps not a theorem of great stature, it is certainly worthy of a
name. It is:

LEMMA 6.41 (Estimation Lemma). If f : D → C is continuous, γ is a contour of
length L, and | f (z)| ≤ M for all z on γ , then

´́
´́
²

γ

f

´́
´́ ≤ ML

Proof. It is poetic justice that we have to give two different proofs, depending on
whether the reader has read Sections 6.1–6.3. Version A is the more natural, but it
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requires knowledge of Sections 6.2–6.3. For readers who took the short cut, Version
B is provided.
Version A. It is sufficient to prove the result for a smooth path γ : [a,b]→ D. Let P

be the partition a = t0 < t1 < · · · < tn = b, with tr−1 ≤ sr ≤ tr. Then

|S(P, f , γ )| =

´́
´́
´

n³

r=1

f (γ (sr))(γ (tr)− γ (tr−1))

´́
´́
´

≤

n³

r=1

| f (γ (sr))| |γ (tr)− γ (tr−1)|

≤ML(γP)

where γP is the polygonal approximation to γ with vertices γ (t0) , . . . ,γ (tn). But
L(γP) ≤ L(γ ), so

|S(P, f ,γ )| ≤ ML(γ ) (6.20)

for all partitions P.
Given any ε > 0 we can find a partition Pε such that

´́
´́S(Pε, f ,γ ) −

²

γ

f

´́
´́ < ε

so ´́
´́
²

γ

f

´́
´́ < |S(Pε, f ,γ )| + ε

and (6.20) gives ´́
´́
²

γ

f

´́
´́ < ML(γ ) + ε

for all ε > 0. Hence ´́
´́
²

γ

f

´́
´́ ≤ ML(γ )

as required.
Version B. First we establish

´́
´́
´

² b

a

(u(t) + iv(t))dt

´́
´́
´ ≤

² b

a

|u(t) + iv(t)|dt (6.21)

for continuous real functions u, v. Let
± b

a
u(t)dt = X,

± b

a
v(t)dt = Y. Then

² b

a

(u(t) + iv(t))dt = X + iY

and

X2 + Y2 = (X − iY )(X + iY ) =

² b

a

(X − iY)(u(t) + iv(t))dt

=

² b

a

(Xu(t)+ Yv(t))dt + i

² b

a

(Xv(t)− Yu(t))dt
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But X2 + Y2 ∈ R, so
² b

a

(Xv(t)− Yu(t))dt = 0

and

X2 + Y2 =

² b

a

(Xu(t)+ Yv(t))dt

where the integrand Xu(t)+ Yv(t) is the real part of (X − iY )(u(t) + iv(t)). So

Xu(t)+ Yv(t) ≤ |(X − iY)(u(t)+ iv(t))|

=
Á
X2 + Y2|u(t)+ iv(t)|

From real analysis,
² b

a

[Xu(t) + Yv(t)]dt ≤

² b

a

Á
X2 + Y2 |u(t)+ iv(t)|dt

which gives

X2 + Y2 ≤
Á
X2 + Y2

² b

a

|u(t)+ iv(t)|dt

so that
Á
X2 + Y2 ≤

² b

a

|u(t)+ iv(t)|dt (6.22)

But

Á
X2 + Y2 = |X + iY | =

´́
´́
´

² b

a

(u(t) + iv(t))dt

´́
´́
´

and with (6.22) this implies (6.21).
Now

´́
´́
²

γ

f

´́
´́ =

´́
´́
´

² b

a

f (γ (t))γ ±(t)dt

´́
´́
´

≤

² b

a

| f (γ (t))||γ ±(t)|dt by (6.21)

=

² b

a

|Mγ ±(t)|dt by real analysis

= ML

The Estimation Lemma will be used in a variety of ways. We now state two
applications.

PROPOSIT ION 6.42. Let γ be a fixed contour and suppose that f varies.

(i) If the maximum value of | f | on γ tends to zero, then
±
γ
f → 0.

More generally, if f → f0 , then
±
γ
f →

±
γ
f0 .

(ii) If the length of γ tends to zero, the image of γ tends to a point z0, and | f | remains
bounded, then

±
γ
f → 0.

In particular this is the case if f is continuous at z0 .
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Proof. To prove (i), observe that as the maximum value of | f | on γ tends to zero,
|
±
γ
f | ≤ ML, which also tends to zero, so

±
γ
f → 0.

The second statements follows by considering f − f0 .

To prove (ii), first observe that if f is continuous at z0, then | f | is bounded in a neigh-
bourhood of z0. So we may assume | f | is bounded on γ . Again, |

±
γ
f | ≤ ML, which

tends to zero.

6.13 Consequences of the Fundamental Theorem

If f is continuous and has an antiderivative F in a domain D, then we saw in Section 6.9
that, for any contour γ in D from z0 to z1,

²

γ

f = F(z1) − F(z0)

This result has interesting consequences. To explore them we need:

DEFIN IT ION 6.43. A contour γ : [a, b] →C is a closed contour if γ (a) = γ (b).

In real analysis, an integral
± a

a f is always zero. In the complex case, if f has an
antiderivative in its domain D, then an integral

±
γ
f round a closed contour inD is always

zero. (In the absence of an antiderivative, this need not be the case, as Example 6.37
shows.) Moreover, if f has an antiderivative in D and z0 , z1 in D are different, it does not
matter which contour γ from z0 to z1 we use to integrate f : the result is always the same.

These properties characterise the existence of an antiderivative:

THEOREM 6.44. Let f be a continuous complex function defined on a domain D. Then
the following conditions are equivalent:

(i) f has an antiderivative in D,
(ii)

±
γ
f = 0 for every closed contour γ in D,

(iii)
±
γ
f depends only on the end points of γ for any contour γ in D.

Proof. We have already established that (i) implies (ii) and (iii). To show that (ii) implies

(iii), suppose that γ1, γ2 are contours in D from z0 to z1, as in Figure 6.12.
Then γ1 − γ2 is a closed contour, so by (ii)

±
γ1−γ2

f = 0. But
²

γ1−γ2

f =

²

γ1

f −

²

γ2

f

so ²

γ1

f =

²

γ2

f

which is (iii).
Finally, to show that (iii) implies (i), we fix z0 ∈ D and for any z1 ∈ D we choose a

contour γ in D from z0 to z1 and define

F(z1) =

²

γ1

f
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Figure 6.12 Two paths with the same end points determine a closed contour.

Because D is open, for some ε1 > 0, if |h| < ε1 then the line segment λ(t) = z1 + ht

(t ∈ [0, 1]) lies in D, and

F(z1 + h) =

²

γ1

f +

²

λ

f

Thus

F(z1 + h) − F(z1)

h
=

1

h

²

λ

f

For any constant c and contour γ from z1 to z2,
²

γ

cdz = c(z2 − z1)

so ²

λ

f (z1)

h
dz = f (z1)

Therefore
F(z1 + h)− F(z1)

h
− f (z1) =

²

λ

f (z)− f (z1)

h
dz

Now we use the Estimation Lemma. Continuity of f implies that, given ε > 0, there
exists δ > 0 (which we may take to be less than ε1) such that

|z− z1| < δ implies | f (z) − f (z1)| < ε

so that, when 0 < |h| < δ, for any z on the line segment λ the integrand satisfies

|( f (z)− f (z1))/h| < ε/|h|

The length of λ is |h|, so whenever |h| < δ,
´́
´́
²

λ

f (z) − f (z1)

h
dz

´́
´́ ≤

ε

|h|
|h| = ε

which implies ´́
´́F(z1 + h)− F(z1)

h
− f (z1)

´́
´́ ≤ ε (|h| < δ)
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But ε is arbitrary, so

lim
h→0

F(z1 + h) − F(z1)

h
= f (z1)

and F±(z1) = f (z1) for z1 ∈ D, as required.

Example 6.45. The function f (z) = |z| is not differentiable, so
±
γ f may (and as we

show, does) depend on the choice of contour γ between points. For instance, consider
γ , σ from 0 to i given by

γ (t) = it (t ∈ [0, 1])

and σ = σ1+ σ2 where

σ1(t) = t (t ∈ [0, 1])
σ2(t) = eit (t ∈ [0,π/2])

as in Figure 6.13. Then
²

γ

|z|dz =

² 1

0

|it| · idt =
Â
it2/2

Ã1
0
= 1

2i

but
²

σ

|z|dz =

² 1

0

|t| · 1 dt +
² π/2

0

|eit | · ieit dt =
Â
t2/2

Ã1
0
+
Â
eit
Ãπ/2
0
= 1

2
+ i− 1= i − 1

2

Figure 6.13 Two paths γ and σ1 + σ2 that yield different values of the integral of |z|.

While complex functions that are merely continuous may be integrated using the basic
formula, they offer little of interest. From now on, differentiable functions, and methods

for integrating them, occupy centre stage. The resulting theory of integration has no
natural real counterpart, because the real line lacks the flexible choice of path between
points that occurs in the complex plane.
With minor exceptions, this chapter completes the natural analogies between the real

and complex theories of differentiation and integration. From now on, new possibilities
will unfold.
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6.14 Exercises

1. Draw the contours γ = [0, i], σ = [0, 1]+ [1, i]. Evaluate
²

γ

re zdz

²

σ

re zdz

2. Draw the contours γ = [−i, i] and σ where σ (t) = eit (t ∈ [−π/2,π/2]). Evaluate
²

γ

|z|dz
²

σ

|z|dz

3. Compute
±
γ z

4dz for γ (t) = (1+ i)t (t ∈ [0, 1]) using the formula

²

γ

f (z)dz =
² 1

0
f (γ (t))γ

±
(t)dt

and multiplying out the right-hand side and integrating the real and imaginary parts.
If γ = [0, 1]+ [1, 1+ i], what is

±
γ z

4dz?

4. Let n be a positive integer. If γ (t) = z0+ reit (t ∈ [0, 2nπ ]) describe the contours γ
and −γ geometrically. Compute

²

γ

1

z− z0
dz and

²

−γ

1

z− z0
dz

5. For γ (t) = eit (t ∈ [0,π ]) evaluate
±
γ f for each of the following functions f :

(i) 1/z2

(ii) 1/z
(iii) cos z
(iv) sinh z
(v) tan z
(vi) (exp(z))3

6. Verify that the length function L satisfies

L(−γ ) = L(γ ) L(γ + σ ) = L(γ )+ L(σ )

where γ ,σ are contours.
7. Let γ (t) = z0 + reit (t ∈ [0, θ]) be the arc centre z0 , radius r, subtending angle θ .

Using Proposition 6.11, verify that

θ = L(γ )/r

which is the usual definition of ‘angle θ in radian measure’.

8. Show that the length of the parabolic arc γ (t) = at2 + 2ait (t ∈ [0, 1]), where
0 < a ∈ R, is

a
(√

2+ log
(
1+

√
2
))

9. If γ is a closed contour in C, the signed area enclosed by γ is defined to be

S = 1

2i

²

γ

z̄dz
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Figure 6.14 What does the signed area represent for this contour?

By writing the integral explicitly in the form
± b

a (u−iv)(u±+iv±), or otherwise, show
that S is real. Show that its value for circular and triangular contours is ³ the usual
area, and that both signs can occur. What is the geometric significance of the sign?
What does the signed area represent for a contour such as Figure 6.14?

10. Show that the signed area in Exercise may also be given by

S = −
²

γ

im z dz S =
1

i

²

γ

re z dz

Write down the value of the integral
±
γ im z, where γ is the square γ = [0, 1] +

[1, 1+ i] + [1+ i, i] + [i, 0].

11. Let γ (t) = eit (t ∈ [0,π/2]). Use integration by parts, Theorem 6.38, to compute

(i)
±
γ z sin zdz

(ii)
±
γ z cos z dz

(iii)
±
γ ze

iz dz

(iv)
±
γ z

2 sin z dz

12. Let cr(t) = z0 + reit (t ∈ [0, 2π]) be the circle centre z0 , radius r > 0. If f is

continuous in the domain D and z0 ∈ D, use the Estimation Lemma to prove

(i) lim
r→0

²

Cr

f (z)dz = 0

(ii) lim
r→0

²

Cr

f (z)

z − z0
dz = 2πif (z0)

13. For each of the following functions f : D → C, either state an antiderivative F :

D→ C or explain why an antiderivative does not exist.
(i) f (z) = z2 , D = C

(ii) f (z) = 1/z2, D = C \ {0}
(iii) f (z) = 1/z, D = C \ {0}
(iv) f (z) = z sin z, D = C

(v) f (z) = |z|2, D = C
(vi) f (z) = z̄, D = C
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Figure 6.15 Graph of x! for real x.

14. Use Euler’s reflection formula

±(z)±(1− z) =
π

sin(π z)

to find ±( 1
2
). Use the identity ±(z+ 1) = z±(z) to calculate ±(n+ 1

2
) for all n ∈ N.

Gauss’s pi function has the value ²(z) = ±(z + 1) and is known to be analytic
in D = C \ {n ∈ Z : n < 0}. By translating the identity ±(z + 1) = z±(z) to
²(z) = z²(z − 1) show that ²(0) = 1 and ²(n) = n! for n ∈ N.

Figure 6.15 shows the graph of x! for real values of x. Calculate the numerical
values of (n+ 1

2
)! for n = 0, 1, 2, 3,−1,−2,−3,−4, and mark them on the graph.



7 Angles, Logarithms, and the Winding
Number

So far, we have defined complex analogues of most of the basic special functions of real
analysis – the exponential and trigonometric functions – and proved that many of their
familiar properties extend to the complex case. Some new features also arise, such as
the link between exponential and trigonometric functions and the periodicity of exp.
There is one glaring exception to our catalogue of complex analogues: the loga-

rithm. In real analysis, we define this as the inverse function to exp : R → R
+, so

log : R+ → R. However, because exp is periodic in C, it is not one-one (injec-
tive). Therefore it does not have an inverse function in the strict set-theoretic sense.
This feature caused many of the historical disagreements about logarithms of nega-
tive and complex numbers, exacerbated by the general view that log z is automatically

meaningful when z ∈ C, and all of its properties ought to generalise to C.
Resolving these issues involves being far more careful when defining complex log-

arithms. But the effort is worthwhile, because logarithms hold the key to many of the
deeper and more powerful features of complex analysis.
The problem of finding inverses to functions that are not bijections arises in real

analysis as well. Inverse trigonometric functions such as sin−1 are notorious for causing
severe headaches, but the square root is the most obvious case. The square f (x) = x2 is

not injective as a function f : R → R. It is also not surjective: negative real numbers are
not squares of real numbers. The historical resolution was to define two square roots for
every positive real number, ±

√
x. Each is a one-sided inverse: (±

√
x)2 = x when x > 0.

But neither is an inverse on the domain of f , which is all of R: their images are the
positive reals and the negative reals, respectively, so they are not surjections onto R. To
obtain genuine inverse functions, we restrict the domain of f to the non-negative reals,
when

√
x is an inverse, or to the non-positive reals, when −

√
x is an inverse. These two

domains meet only at the origin.
It would be natural to try the same trick in the complex case. But now there is no very

natural way to restrict the domain and codomain to make the logarithm a bijection. A
variety of more or less artificial choices exist, such as the ‘cut plane’ Cπ where the neg-
ative real axis is deleted, and these have their uses. To obtain a natural description of the
complex logarithm, though, we use a more geometric approach. In classical terms, the
complex logarithm is ‘multivalued’ – its value is not uniquely defined. The way in which
its multiplicity of values fit together is closely analogous to the way that the measure-

ment of an angle in radians gives not a single real number, but an infinite list differing
only by multiples of 2π. Indeed, these two instances of non-uniqueness are closely
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related. In particular, the well-known complications when defining inverse trigonomet-

ric functions in real analysis also arise because these functions are 2π -periodic, hence
not injective. The same issue has to be resolved to make sense of the complex logarithm.

We discuss these ideas below, and apply them to a topological invariant known as
the winding number of a path relative to a point z0 ∈ C. In essence, this measures the
total angle relative to z0 traversed by a point moving along the path continuously from
beginning to end. When divided by 2π , this angle tells us how many times the path
winds round the point z0 . The winding number proves to be extremely useful in the
deeper parts of the subsequent theory.

7.1 Radian Measure of Angles

We first relate the power series definitions of sine (5.7) and cosine (5.8) to the usual
geometric ones, with the angle being measured in radians. This completes the proof that
the power series represent the traditional trigonometric functions in the real case.
Let 0 ²= z ∈ C and write z in polar coordinates as z = reiθ , (r > 0). Since eiθ =

cos θ + i sin θ , Table 5.1 in Section 5.5 implies that for fixed r, as θ increases from 0
to π/2, the real part of z decreases monotonically from r to 0 while the imaginary part
increases monotonically from 0 to r. Since |z|2 = r2(cos2 θ + sin2 θ ) = r2 , it follows
that z traces out the first quadrant of a circle of radius r (in the anticlockwise direction)
as θ increases from 0 to π/2, Figure 7.1 (left).
Similarly, as θ increases from π/2 to π , the point z traces out the second quadrant

of a circle of radius r; from π to 3π/2, it traces out the third quadrant; from π to

3π/2, it traces out the fourth; and thereafter it continues to go round the circle in the
anticlockwise direction, Figure 7.1 (middle).

We now compute the arc length from 1 to z along the circular path. For θ ≥ 0, let
γ (t) = reit, (t ∈ [0, θ]). Then γ is a contour from 1 to z along the relevant arc. The
length of γ is

Figure 7.1 Left: reiθ traces out the first quadrant of a circle of radius r as θ increases from 0 to
π/2. Middle: For θ ∈ R, reiθ repeatedly traces out the circle of radius r in the anticlockwise
direction. Right: Traditional geometric definitions of sinθ and cos θ agree with the power series
definitions.
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L(γ ) =

± θ

0

|γ ³(t)|dt =

± θ

0

|ireit|dt =

± θ

0

rdt = rθ

Thus θ = L(γ )/r, which is the standard definition of ‘angle measured in radians’.
Figure 7.1 (right) then shows that the geometric definitions of sin θ and cos θ , in terms

of a right triangle with an angle θ radians, agrees with our analytic definition via power
series.

The 2π -periodicity of sin and cos proved in Proposition 5.5 shows that this agreement

extends to angles greater than 2π , and to negative angles, which of course are measured

in the opposite sense round the circle: clockwise.

7.2 The Argument of a Complex Number

We now look in more detail at the expression of a complex number z in the form reiθ .

Here r = |z|, so it is unique. However, when r = 0 any value of θ leads to z = 0.

And when r > 0 there are infinitely many possible values of θ , differing only by integer
multiples of 2π. Recall that the unique value in the range −π < θ ≤ π is called the
principal value of the argument of z, and is denoted by

arg z

This defines a function

arg : C \ {0} :→ R

The function arg is not continuous on the negative real axis. This is a result of the need
to choose θ uniquely: just above the axis θ is close to π , just below it is close to −π .
We can sidestep this problem (inelegantly) by defining the cut plane

Cπ = C \ {x + iy : y = 0,x ≤ 0}

as in Figure 7.2.
We claim that arg is continuous in the cut plane. This is plausible geometrically, but

we must provide a rigorous proof. There is one technical difficulty: the bad behaviour of

Figure 7.2 The cut plane Cπ .
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inverse trigonometric functions (also caused by periodicity). We circumvent it by using
several overlapping domains, on each of which the behaviour is sufficiently good. The
proof that follows is an inelegant ‘bare hands’ reduction to properties of real functions:
for a more elegant approach see Section 8.4.

PROPOSIT ION 7.1. The function arg is continuous in the cut plane Cπ .

Proof. Let

D1 = {x + iy ∈ C : y > 0}

D2 = {x + iy ∈ C : x > 0}

D3 = {x + iy ∈ C : y < 0}

Then

C = D1 ∪ D2 ∪D3

(draw a picture!) and in each of these domains we have an easy way to find the value of
arg z.

To do so, observe that if
z = x+ iy = eiθ

and we wish to solve for r, θ , then

r2 = x2 + y2 so r =

²
x2 + y2

and

cos θ =
x

³
x2 + y2

sin θ =
y

³
x2 + y2

From properties of sin and cos it follows that if z ∈ D1 there is a unique solution for θ
with 0 < θ < π . In this range cos is monotonic strictly decreasing and continuous, so
its restriction to (0,π ) has a continuous inverse function

cos−1 : (−1, 1)→ (0,π )

For z ∈ D1 we have

arg z = cos−1
re z

|z|

which, being a composition of continuous functions, is continuous.
Similarly if x ∈ D2 then−π/2 < θ < π/2. In this range, sin increases monotonically

from−1 to 1, so it has a continuous inverse

sin
−1

: (−1, 1)→
´
−π

2
,
π

2

µ

Now

arg z = sin−1
im z

|z|

which is continuous on D2.
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Figure 7.3 The cut plane Cα.

Finally, on D3 we can use

cos
−1

: (−1, 1)→ (−π , 0)

which is a different choice of inverse cosine from that used in D1 because we are
inverting the restriction of cos to a different interval. Again arg is continuous on D3.

Since D1 ,D2,D3 are open, arg is continuous in D1 ∪D2 ∪ D3 = Cπ .

It is sometimes convenient to proceed more generally. Let α ∈ R, and let Rα be the
ray

Rα = {reiα : r ≥ 0} ⊆ C

Let

Cα = C \ Rα

as in Figure 7.3. Choose
θ = arg

α
z (z ∈ Cα)

by the rule
z = reiθ , r > 0, α− 2π < θ < α

Then by a similar method it may be shown that arg is continuous in Cα .

7.3 The Complex Logarithm

The complex logarithm poses similar problems, because the complex exponential
function is not one-one.
We wish to define log z, for 0 ²= z ∈ C, by

w = log z if z = ew

(We exclude z = 0 because ew is never zero, by Proposition 5.4.)
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Let z = reiθ , w = u + iv. (The mixture of polar and Cartesian coordinates is
deliberate!) We assume r > 0, −π < θ ≤ π, so θ = arg z. Then z = ew becomes

reiθ = eu+iv (7.1)

Taking moduli,

r = eu (7.2)

Since r > 0 and r,u ∈ R this has the unique solution

u = log r

where log is the real natural logarithm. Then (7.1) and (7.2) imply that

eiθ = eiv

so that
v = θ + 2nπ (n ∈ Z)

Hence

log z = w = log r + i(θ + 2nπ )

or

log z = log |z| + i(arg z+ 2nπ ) (7.3)

The complex logarithm is thus ‘multivalued’ and therefore not a function in the strict
set-theoretic sense. To obtain a genuine (single-valued) function we define the principal
value of the logarithm to be

Log z = log |z| + i arg z (0 ²= z ∈ C)

(Note the capital ‘L’ for the principal value.) This function is not continuous on the
negative real axis. However, for z ∈ Cπ the real and imaginary parts of Log are clearly
continuous, so Log is continuous in the cut plane.
Now we can compute the derivative of the logarithm. We have

d

dz
Log z0 = lim

z→z0

Log z− Log z0

z− z0

= lim
w→w0

w− w0

ew − ew0

setting z = ew , z0 = ew0 and using continuity of Log. Thus

1
d
dz
Log z0

= lim
w→w0

ew − ew0

w − w0
=

d

dz
expw0 = e

w0

and
d

dz
Log z0 =

1

ew0
=

1

z0

and in general
d

dz
Log z =

1

z
(z ∈ Cπ)
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In the same way, in the cut plane Cα we can define

logα z = Log |z| + i argα z

and this is continuous, with derivative
d

dz
logα z =

1

z
(z ∈ Cα)

Once the logarithm is defined, powers za for complex a can be defined, in a cut plane,
by reducing them to exponentials. The principal value of za, when z ²= 0, is

za = exp(aLog z)

Exercises 9–14 of Section 7.9 explore this function. For a more global view of za see

Chapter 14.

7.4 The Winding Number

Suppose that γ : [a,b]→ C\ {0} is a closed path. The choice of codomain here ensures
that the path does not pass through the origin. If we imagine t, the parameter, to be time,

increasing from a to b, and choose the argument θ(t) of γ (t) to vary continuously with
t, then as γ (t) moves along the path, then intuitively the total change in argument is the
number of times that γ winds round the origin (anticlockwise), multiplied by 2π. (If γ
is not closed this can also be defined, but it need not be an integer.)
We wish, of course, to make this idea precise:

DEFIN IT ION 7.2. A continuous choice of argument along a path γ : [a, b] → C \ {0}
(which for full generality we no longer require to be a closed path) is a continuousmap

θ : [a,b]→ R such that

eiθ(t) =
γ (t)

|γ (t)|
(7.4)

Condition (7.4) merely says that θ (t) is one of the possible values of the argument of
γ (t).

Before proving that a continuous choice of argument exists, in Theorem 7.4 below,
we consider a simple example.

Example 7.3. Let γ (t) = reit (t ∈ [0,π ]), Figure 7.4.
A continuous choice of argument is θ(t) = t, because obviously reit/|reit| = eit =

reiθ (t) . But this is not the only possible choice: θ (t) = t + 2π works equally well, or
indeed θ(t) = t + 2nπ for any fixed n ∈ Z.
What we cannot do is ‘change horses in midstream’, say by choosing

θ(t) =

¶
t (t ∈ [0,π/2])

t + 2π (t ∈ (π/2,π ])

If we do that, condition (7.4) holds, but θ is not continuous.
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Figure 7.4 A semicircular path.

The difficulty (though it does not take much getting used to) in handling continuous
choices of argument is that it does not in general suffice to insist on some simple recipe
for choosing a value of the argument, such as keeping angles between 0 and 2π . Such
a choice becomes discontinuous if the path winds round once anticlockwise, taking the
argument to 2π , and then continues in the anticlockwise direction. Then the argument

jumps discontinuously back to near 0 when we want it to continue increasing from 2π .
It turns out that we can choose the argument at the starting point to be any of

the infinitely many possible values; but this choice then determines all of the rest
uniquely – and the arguments that arise need not stay within any predetermined range.
It is intuitively obvious that this kind of choice can be made, and that it is unique once
we decide where to start. Its proof is a little tricky: it uses the Paving Lemma.

THEOREM 7.4. (i) Let γ : [a,b]→ C \ {0} be a path not passing through the origin.
Then there exists a continuous choice of argument for γ .

(ii) Any other continuous choice of argument differs from this by a constant integer
multiple of 2π .

Proof. By the Paving Lemma 2.33 we can subdivide γ into finitely many subpaths
γr (r = 1, . . . , n) such that each γr lies inside a disc Dr ⊆ C \ {0}, Figure 7.5. If
the centre of dr is at ρreiθr , then taking αr = θr + π , we find that Dr ⊆ Cα , so argα is

continuous in Dr .

This gives a continuous choice of argument across γr for each r, but of course these
choices need not fit together continuously. However, any choice of argument can be
obtained from any other by adding a suitable integer multiple of 2π. We can therefore
adjust the argαr inductively so that they do fit together continuously, as follows.
As usual, let γr be defined on the parametric interval [tr−1, tr]. There is an integer n2

such that

argα1(t1) = argα2(t1) + 2n2π

Then there is an integer n3 such that

argα2(t2)+ 2n2π = argα3(t2)+ 2n3π
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Figure 7.5 Paving a path.

and so on inductively, choosing nr+1 so that

argαr (tr) + 2nrπ = argαr+1 (tr) + 2nr+1π

Then we define

θ(t) = argαr(tr)+ 2nr2π (t ∈ [tr−1 , tr])

with n1 conventionally defined to be 0. Then θ is continuous. This proves that a
continuous choice of argument exists.
Next, suppose that θ∗ is another continuous choice of argument. Then we must have

θ∗(t) = θ(t)+ 2n(t)π

where n(t) is an integer, possibly depending on t. But

n(t) =
θ∗(t) − θ(t)

2π

is continuous, yet takes integer values. It is therefore constant.

Note that a continuous choice of argument is defined on the parametric interval [a,b],
not on the image of γ . This means that if the path returns to the same point, with γ (t1) =
γ (t2) but t1 ²= t2, the arguments θ(t1) and θ(t2) may be different. Intuitively, it is clear
that this will happen if the path winds round the origin a non-zero number of times

between t1 and t2 .

Example 7.5. Let γ (t) = re4π it (t ∈ [0, 1]).
A continuous choice of argument is given by θ (t) = 4π t + 2nπ, for any choice of

n ∈ Z. Although γ (t) = γ (t+ 1
2
) for t ∈ [0, 1

2
], the choices of argument θ(t) and θ(t+ 1

2
)

differ by 2π , because the path has travelled once round the origin (anticlockwise)
between t and t + 1

2 .
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More significantly, γ (0) = γ (1), but the difference in arguments is 4π , because in
total the path has travelled twice round the origin (anticlockwise) between t = 0 and
t = 1.

We can take advantage of this idea:

DEFIN IT ION 7.6. The winding number of a path γ : [a,b]→ C \ {0} round the origin
is

w(γ , 0) =
θ(b)− θ (a)

2π

for a continuous choice of argument θ along γ .

By Theorem 7.4 (ii) the winding number is well defined; that is, any continuous choice
of argument gives the same value.
For any closed path, the winding number is an integer, because θ (b) − θ(a) is an

integer multiple of 2π.
The winding number takes the sense of the path into account: anticlockwise turns

count as positive, clockwise turns count as negative.

Example 7.7. Let γ (t) = re−it (t ∈ [0, 6π ]).
A continuous choice of argument is θ(t) = −t. Then

w(γ , 0) = θ(6π) − θ(0)

2π
= −3

and γ winds three times round the origin in the clockwise direction.

The winding number is additive:

THEOREM 7.8. Let γ1 and γ2 be two paths in C \ {0} such that the end point of γ1 is
the start of γ2 . Then

w(γ1 + γ2 , 0) = w(γ1, 0) + w(γ2, 0)

Proof. We may assume that γ1 ,γ2, and γ1 + γ2 have parametric intervals [a,b], [b, c],
and [a, c] respectively. Let θ be a continuous choice of argument on γ1 + γ2 . Then

w(γ1 + γ2, 0) =
θ(c) − θ(a)

2π

w(γ1, 0) =
θ(b) − θ(a)

2π

w(γ2, 0) =
θ(c) − θ(b)

2π

This is an extremely useful result, because it lets us compute the winding number of
a complicated path by breaking it up into nice pieces and adding their contributions. It
extends easily to show that

w(γ1 + · · · + γn , 0) = w(γ1, 0) + · · · +w(γn , 0)

and that
w(−γ , 0) = −w(γ , 0)
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7.5 The Winding Number as an Integral

If the path is smooth, we can specify its winding number as an integral along the path.
Additivity of the winding number extends this formula to contours. First, consider a
closed contour.

THEOREM 7.9. Let γ be a closed contour. Then

w(γ , 0) = 1

2π i

±

γ

1

z
dz (7.5)

Proof. Subdivide the path into subpaths γ1 , . . . , γn as in Theorem 7.4, whose notation
we now use. Each γr lies in a cut plane Cαr . If γr is defined on the interval [tr−1 , tr] then

±

γr

1

z
dz = logαr γ (tr)− logαr γ (tr−1)

= log |γ (tr)| − log |γ (tr−1)|

= i(argαr |γ (tr)| − argαr |γ (tr−1)|)

As in Theorem 7.4 we make sure that argαr γ (tr) = argαr+1 γ (tr), that is, the choices
of argument agree where the subpaths join together. Then, summing the integrals for
r = 1, . . . ,n, the real parts cancel out because γ is a closed contour, and the imaginary

parts add up to 2πw(γ , 0), as required.

7.6 The Winding Number Round an Arbitrary Point

There is nothing very special about the origin as far as winding numbers are concerned.
If γ : [a, b] → C is a path and z0 ∈ C does not lie on γ , we can define the winding
number of γ around z0. The easiest way to do this is to translate the origin, setting

±(t) = γ (t)− z0 (t ∈ [a, b])

and calculating
w(γ , z0) = w(±, 0)

For a closed path γ , we get

w(γ , z0) =
1

2π i

±

±

1

z
dz

=
1

2π i

± b

a

±³(t)

±(t)
dt

=
1

2π i

± b

a

γ ³(t)

γ (t)− z0
dt

=
1

2π i

±

γ

1

z− z0
dz

This leads to:
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DEFIN IT ION 7.10. If γ : [a,b] → C is a closed path and z0 ∈ C does not lie on γ ,
then the winding number of γ around z0 is

w(γ , z0) =
1

2π i

±

γ

1

z− z0
dz (7.6)

The additivity of w(γ , 0) in Theorem 7.8 extends easily to w(γ , z0) for fixed but
arbitrary z0 ∈ C, using the same trick of translating the origin.

7.7 Components of the Complement of a Path

We consider how the winding number w(γ , z0) of a given closed path γ can vary as z0
varies.

By Proposition 2.41, the complement S of the image of γ is open, and also each con-
nected component of S is open. The winding number w(γ , z0) is defined for all z0 ∈ S,

and it is an integer-valued function on S. It is geometrically plausible that this function
is constant on any connected component of S. We prove this analytically by showing
that w(γ , z0) is a continuous function of z0 ∈ S. The desired result then follows, since
any integer-valued continuous function is constant on any connected set.
The proof that w(γ , z0) is continuous in z0 is obtained by a direct estimate. Fix z0 ∈ S.

Since S is open there exists k > 0 such that |z1 − z0| < k implies z1 ∈ S. Therefore if z
lies on the image of γ then |z− z0| ≥ k. Thus if |z1− z0| < k/2 we have |z− z1| > k/2.

Now

|w(γ , z0)− w(γ , z1)| =
1

2π

····
±

γ

¸
1

z− z0
−

1

z − z1

¹
dz

····

=
1

2π

····
±

γ

z1 − z0

(z− z0)(z− z1)
dz

····

≤
|z1 − z0|

πk2

by the Estimation Lemma 6.41.
Given any ε > 0, take δ = min(k/2,πk2ε/2L(γ )). Then

|z1 − z0| < δ implies |w(γ , z0)− w(γ , z1)| < ε

Hence w(γ , z0) is continuous in z0 on S.

Example 7.11. The path in Figure 7.6 has the winding numbers shown, around points
z0 in the components of S to which those numbers are assigned. The set S has a single
unbounded component (Proposition 2.41) which we denote by O(γ ) (where the ‘O’
stands for ‘outside’).
As Figure 7.6 shows, if z0 ∈ O(γ ) then w(γ , z0) = 0. This is easily proved from the

integral formula (7.6), as follows. Let z0 be ‘far from the image of γ ’, that is, assume
|z − z0| ≥ K for large K. Then the Estimation Lemma 6.41 shows that

|w(γ , z0)| ≤ L(γ )/2πK
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Figure 7.6 Winding numbers for components of the complement of a path.

which tends to zero for large K. But the left-hand side is a non-negative integer, so it
must be equal to zero for large enough K. Since it is constant on O(γ ), it must be zero
on the whole of O(γ ).

7.8 Computing the Winding Number by Eye

The somewhat complicated definition of the winding number may give the impression

that it is complicated to calculate. This is not so, at least for paths that are contours made

up of smooth subpaths. For contours the calculation is simple: trace your finger along
the contour and count the number of turns. The point of this section is that this process
can easily be formalised so that, in this case, what is obvious is also true.

Example 7.12. We start with a path γ whose image is a rectangle with vertices ±2± i,

Figure 7.7.

Figure 7.7 A rectangular path.

If you want a formula, it is not hard to give one; for example let

γ (t) =

⎧
⎪⎪⎨

⎪⎪⎩

2− i + 2it (t ∈ [0, 1])
2+ i − 4(t − 1) (t ∈ [1, 2])
−2+ i − 2i(t − 2) (t ∈ [2, 3])
−2− i + 4(t− 3) (t ∈ [3, 4])
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This path is composed of four standard ‘line segment’ paths, one for each edge, Sec-
tion 2.4. As the parameter t varies, the corresponding point moves along each edge at
constant speed. (With our definition of a line L(t), the speed along an edge depends on
the length of that edge because t is taken in the interval [0, 1].)
We want to calculate w(γ , 0).
First, here is how not to do the calculation.
Break γ up in the most natural way, into subpaths γr = γ |[r−1,r] for r = 1, 2, 3, 4.

Then use the integral formula

w(γ , 0) =
1

2πi

±

γ

1

z
dz =

1

2π i

4º

r=1

±

γr

1

z
dz

Now (to take one subpath)
±

γ1

1

z
dz =

± 1

0

γ ³(t)

γ (t)
dt

= [log(2− i + 2i)]10

= Log (2+ i) − Log (2− i)

because γ1 lies in Cπ , so the principal value Log is continuous on γ1. Then

Log (2 ± i) = log |2± i| + i arg (2 ± i)

= log
√
5± i sin−1(1/

√
5) (7.7)

so ±

γ1

1

z
dz = 2i sin−1(1/

√
5)

where the inverse sine is chosen between −π/2 and π/2.
You now have three similar integrals to evaluate. Add them, divide by 2π i . . . , and do

some very careful bookkeeping on the domains of the inverse trigonometric functions
that occur. It can be done; in a sense it is not even difficult – but it is hardly to be
recommended.

It is a little better (but not much) to work from the ‘continuous choice of argu-
ment’ definition. This starts you at stage (7.7) above for each subpath, with the same

bookkeeping problems at the end.
Here is a more civilised method. Divide γ into subpaths δ1 , δ2 as in Figure 7.8.
Now w(γ , 0) = w(δ1, 0) + w(δ2, 0). Since δ1 lies entirely within the cut plane Cπ ,

the principal value of arg is continuous on δ1 . Hence, dotting all i’s and crossing
all t’s,

w(δ1 , 0) = [arg(i)− arg(−i)]/2π
= [π/2− (−π/2)]/2π
= 1

2

Similarly, δ2 lies entirely within the cut plane C0, so arg0 is continuous on δ2. Hence
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Figure 7.8 A more civilised method.

w(δ2, 0) = [arg0(−i) − arg0(i)]/2π

= [−π/2− (−3π/2)]/2π

=
1
2

Adding, w(γ , 0) = 1.

Clearly this process can be telescoped: the arg calculations merely confirm, in a
predictable way, the obvious.
We summarise this method as follows:

(1) Break γ into convenient pieces, each lying in some cut plane.
(2) For each piece, compute the contribution to the winding number as the difference

between the arguments of the end points, using the relevant continous arg – that is,
argα onCα – or, geometrically, find the angle subtended at the origin by the two end
points of the subpath, with the appropriate sign.

(3) Add these contributions.

It helps if the dissection of γ into subpaths is performed by drawing a single
straight line through the origin, because then the contributions are always ± 1

2
. Thus

in Figure 7.9, the line L cuts the path γ into four segments AB, BC, CD, and DA.

Figure 7.9 Cutting the path along line L makes the calculation of the winding number easy.
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Figure 7.10 A more complicated example where cutting the path along a suitable line makes the
calculation of the winding number easy.

Now

w(γ , 0) = w(AB, 0) + w(BC, 0) + w(CD, 0) + w(DA, 0)
= 1

2
+ 1

2
+ 1

2
+ 1

2

= 2

Similarly, the path in Figure 7.10 gives

w(γ , 0) = w(AB, 0)+ w(BC, 0)+ w(CD, 0)+ w(DE, 0) + w(EF, 0)+ w(FA, 0)
= 1

2 +
1
2 + 0+ (− 1

2) + 0+ 1
2

= 1

This method is essentially the mathematical equivalent of ‘run your finger along the
path and count half-turns’. The ingredients needed to make it rigorous are not compli-

cated evaluations of args. The real crunch comes in showing that the path really does
cross the chosen line L at the points A, B, C, and so on; that it crosses the line only at
those points; and that it passes through these points in the stated order; and that the sense
(clockwise or anticlockwise) of each subpath is as in the diagram. It is also worth bear-
ing in mind that a smooth path may cross a line infinitely many times, so this method

is not foolproof. But whenever (as is always the case in the sequel) γ is specified in a
straightforward way – such as by a simple formula, a polygon, or a series of straight
lines and circular arcs – these ingredients are easily supplied. We then make no further
fuss when we assert that a certain winding number takes a particular value.
Comparison of the first ‘bad’ method in Example 7.12 with the final ‘good’ one gives

a striking illustration of the dangers of blind ‘formula-crunching’. Complex analysis is
highly geometric, and the geometry should not be despised.

7.9 Exercises

1. Compute the principal values of the arguments of the following complex numbers:

1+ i, 1
2
+ i

√
3
2
, (1+ i)3 , (1

2
+ i

√
3
2
)243, (1+ i)2( 1

2
+ i

√
3
2
)3.
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2. Let arg z denote the principal value of the argument of z ²= 0, that is, −π <

arg z ≤ π . For real x, ywith x < 0 show:
(i) limy→0 arg(x + i|y|) = π

(ii) limy→0 arg(x − i|y|) = −π
Compute the corresponding limits when x = 0 and when x > 0.

3. Compute the following principal logarithms: Log (3i), Log (−2i), Log (1 + i),

Log (−1), Log (z10) where z = 2eiπ/3 , Log (x) for real x ²= 0.

4. For z1 , z2 ²= 0 show that

Log (z1z2) = Log (z1)+ Log (z2)+ 2nπ i

where n is an integer that need not be zero. Specify the values that nmay take. Show
that a logarithm of z1z2 is of the form

log z1 + log z2

provided that appropriate values of the logarithms are taken.
5. The ‘Bernoulli paradox’ is as follows:

(−z)
2
= z

2

hence

2 log(−z) = 2 log(z)

so

log(−z) = log(z)

What is the fallacy?
6. Let f : C → C be given by f (z) = eiθ z for constant real θ . Show that f rotates the

complex plane through an angle θ . (Hint: prove that it is a rigid motion, that is, it
satisfies | f (z1)− f (z2)| = |z1 − z2| for all z1, z2 ∈ C, and that it fixes the origin and
only the origin. Then consider the value of f (1).)
Show that the transformation f (z) = iz rotates the complex plane through a right

angle, and describe the effects of the transformations f (z) = −z, f (z) = −iz as

rotations.

For any complex number λ = reiθ describe the transformation f (z) = λz in

geometric terms.

7. In each of the following cases, for z = reiθ , draw the locations of z and 1/z inC:
(i) 3eiπ/2
(ii) 2eiπ//4

(iii) 1
2e

iπ/3

(iv) 3e−iπ
Describe the transformation f (z) = 1/z in geometric terms.

8. Let n be a positive integer. A complex number ω is said to be an nth root of unity if
ωn = 1.
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(i) Find all nth roots of unity in polar coordinates and draw a picture.
(ii) For n = 2, 3, 4, express the nth roots of unity in the form x+ iy.

(iii) If ω1 ,ω2 are nth roots of unity, show that the following are also nth roots of
unity:

ωm
1 ω1ω2 ω1/ω2

(iv) For given r, θ ∈ R, (r > 0), find all z ∈ C such that

z
n = re

iθ

(v) If zn1 = zn2, show that z1 = ωz2 , where ω is an nth root of unity.
9. For z, β ∈ C, z ²= 0, define the principal value of zβ to be

zβ = exp(β Log z)

Compute the principal values of the following powers:

1
√
2 (−2)

√
2 ii 2i (3− 4i)1+i (3+ 4i)5

10. Using the notation of Exercise 9, for z ∈ Cπ , show that d(zβ)/dz = βzβ−1 . For
fixed a ∈ Cπ , what is d(az)/dz?

11. Let α ∈ R,β ∈ C. For z ∈ Cα , define

(zβ)α = exp(β logα z)

Compute all possible values of (ii)α , (2i)α , ((3− 4i)1+i)α for various values of α.
For fixed z, show that as α varies, (zβ )α takes only finitely many values when β

is a rational number.

If m,n ∈ Z,n > 0, show that

((zm/n)α)
n = zm

What is ((zn)m/n)α?
12. Using the notation of Exercise 11, for z ∈ Cα, compute d((zβ)α)/dz and

d((az)α))/dz.

13. Describe the image of the functions f : Cπ → C geometrically where f (z) is given
by the principal values of the following:

z
1/2

z
1/3

z
i

14. Let α ∈ R,β ∈ C, z ∈ Cπ . By writing β = u+ iv, find

|(zβ)α | and arg (zβ)α

Show that |(zβ)α | is independent of α if and only if β is real.
For positive integers m,n let f (z) be the principal value of zm/n. Describe f :

Cπ → C geometrically.
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15. Express Log (1 + z) as a power series in z of the form

Log (1+ z) =
∞º

n=0
anz

n (|z| < R)

specifying the coefficients an and the radius of convergence R.
16. Show:

(i) cos(−i Log (z +
√
z2 − 1)) = z

(ii) sin(−i Log (i(z+
√
z2− 1))) = z

(iii) tan
´
i

2
Log

´
i + z

i − z

µµ
= z

Use these properties to express cos−1 z, sin−1 z, tan−1 z in terms of the logarithm.

17. Show that all the values of cosh−1 z have the form

cosh
−1

z = log(z+
³
z2 − 1)

for all possible values of the logarithm and square root. In the same sense, show that

sinh−1 z = log(z +
³
z2 + 1)

tanh−1 z = 1
2
log

´
1+ z

1− z

µ

18. Let D = {z ∈ C :
i + z

i − z
∈ Cπ }. Describe D geometrically. Define the principal

value of the inverse tangent tan−1 : D → C to be

tan−1 z = 1
2
i Log

´
i + z

i − z

µ

(note the principal value of the logarithm). Show that tan−1 is differentiable in D

with derivative 1/(1+ z2).

19. Draw the following paths and specify all the continuous choices of argument along
them:

(i) γ (t) = 2e−it (t ∈ [0, 4π ])
(ii) γ (t) = t + i(1− t) (t ∈ [0, 1])
(iii) γ (t) = t − 1+ it2 (t ∈ [−1, 1])

(iv) γ (t) =
¶

t + i(1 − t) (t ∈ [0, 1])
1+ i(t − 1) (t ∈ [1, 2])

In each case compute the winding number of the path round the origin.
20. Find the winding number w(γ , z0) for each of the following choices of γ , z0:

(i) γ (t) = 2e−it (t ∈ [0, 2π ]); z0 = 1, 3i
(ii) γ (t) = t + i(1 − t) (t ∈ [0, 1]); z0 = 1+ 1,−i, 10i

21. For each of the following, draw a picture of the path and use a sensible method to
compute

»
γ 1/(z− z0)dz:

(i) γ (t) = te−it (t ∈ [π , 5π]) z0 = 0

(ii) γ (t) = −it (t ∈ [0, 1]) z0 = 1

(iii) γ (t) = it (t ∈ [−1, 1]) z0 = 1
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Figure 7.11 Compute (by eye) the winding numbers of these closed paths round a point in each
component A, B, C , . . . .

(iv) γ (t) = σ + [1, 2]+ ρ + [−2,−1] z0 = 0

where σ (t) = ei(π−t) , (t ∈ [0,π]) and ρ(t) = 2e−it (t ∈ [0, 4π ]).
22. Compute (by eye) the winding number of the given closed paths round a point

in each of the connected components A, B, C, . . . of the complement, drawn in
Figure 7.11.



8 Cauchy’s Theorem

The Fundamental Theorem of Contour Integration, Theorem 6.33, tells us that if D is a
domain and f : D→ C has an antiderivative in D, then the integral of f along a path in
D from z0 to z1 can be calculated using the formula

±

γ

f = F(z1) − F(z0)

In particular, if γ is closed, so z1 = z2 , then

±

γ

f = 0

Cauchy’s Theorem goes further. It states conditions under which
²
γ f = 0 when there

is no initial reason for f to have an antiderivative. There are many different versions of
Cauchy’s Theorem – or, to be precise, many different theorems of this type. Cauchy was
the first to publish such a result, announcing it in 1813 and getting it into print in 1825.
Gauss was aware of the basic idea in 1811, but the accolade goes to Cauchy because he
was the first to make it public.
Both Gauss and Cauchy realised the basic fact that if γ does not wind round points

outside D (that is, the winding number round such points is zero) then
²
γ f = 0. For

instance, f (z) = 1/z has the single point 0 outside its domain, so if the closed contour γ
does not wind round the origin,

²
γ f = 0, Figure 8.1.

Figure 8.1 The integral of 1/z along this closed path is zero.
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Figure 8.2 A star domain.

Our main aim in this chapter is to establish the following version of Cauchy’s
Theorem:

If f is differentiable in a domain D and w(γ , z) = 0 for all z ±∈ D, then
±

γ

f = 0.

We start the theory rolling by proving the special case where the contour is a triangle.
Then we prove a theorem that requires a restriction on the domain D rather than the

contour γ . we say that D is a star domain if it contains a point z∗ such that for any other
point z ∈ D the line segment [z∗, z] ⊆ D, Figure 8.2. We then define F(z) =

²
[z∗ ,z]

f

and use the triangle version of the theorem to show that F is an antiderivative of f . This
means that

²
γ
f = 0 for any closed contour in a star domain.

In particular, a disc is a star domain, and this leads to a very significant result. For a
differentiable function f in a general domain D, we may not be able to find an antideriva-
tive F : D→ C. But if we restrict attention to any disc± ⊆ D, there is an antiderivative
F : ± → C. Thus an antiderivative may not exist globally throughout D, but it does
exist locally in any neighbourhood Nr(z0) ⊆ D for any z0 ∈ D.

Using the Paving Lemma 2.33, any contour γ in an arbitrary domain D can be written
as γ = γ1 + · · · + γn where each subcontour γr lies in a disc Dr ⊆ D. In the (star
domain) Dr we can choose a step path σr with the same end points as γr and (by the
existence of an antiderivative in Dr),

²
σr
f =

²
γr
f . If we set σ = σ1 + · · · + σn , then²

σ
f =

²
γ
f , Figure 8.3.

Figure 8.3 Reduction of a contour integral to an integral along a step path.

This reduces the investigation of
²
γ
f to the case of an integral along a step path σ ,

which can be attacked by geometrically inspired methods.
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8.1 The Cauchy Theorem for a Triangle

At the end of the nineteenth century, amongst many different versions of Cauchy’s
Theorem, a most ingenious proof for a triangular contour was conceived by Eliakim
Hastings Moore. Earlier proofs usually insisted that the function f should have a contin-
uous derivative f ². By restricting the contour to a triangle, Moore’s proof requires only
that f ² exists throughoutD. It therefore provides a suitable basis for the development of
the theory for all differentiable functions.
For z1, z2 , z3 ∈ C, let T (z1, z2, z3) be the set of points inside and on the triangle with

vertices z1 , z2, z3. Formally,

T(z1 , z2 , z3) = {z ∈ C : z = λ1z1 + λ2z2 + λ3z3 ,λj ∈ R, λj ≥ 0, λ1 + λ2 + λ3 = 1}

where j = 1, 2, 3.
The boundary contour of the triangle, composed of the three line segments that form

its sides, is
∂T (z1, z2, z3) = [z1 , z2]+ [z2 , z3]+ [z3 , z1]

Whenever there is no confusion we denote the triangle by T and its boundary by ∂T.

THEOREM 8.1 (Cauchy’s Theorem for a Triangle). Let f be a differentiable function in
a domain D. If the triangle T lies in D, as in Figure 8.4, then

²
∂T

f = 0.

Proof. Let |
²
∂T

f | = c≥ 0.

We prove that c = 0 by an indirect argument. First we subdivide T into four smaller

triangles T (1), T(2) ,T(3) ,T (4) by joining the midpoints of the sides as in Figure 8.5.
We know that

±

∂T

f =

4³

r=1

±

∂T(r)
f

Therefore

c =

´́
´́
±

∂T

f

´́
´́ ≤

4³

r=1

´́
´́
±

∂T (r)

f

´́
´́

Figure 8.4 A triangular path in D.
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Figure 8.5 Subdividing the triangular path.

so we must be able to choose r such that
´́
´́
±

∂T(r)
f

´́
´́ ≥ c

4

(If more than one r satisfies this inequality, choose any of those – say the one with
smallest r.) Define T1 = T (r). Then

´́
´́
±

∂T1

f

´́
´́ ≥ c

4
and L(∂T1) =

1
2
L(∂T)

Repeat this process of subdivision to get a sequence of triangles

T ⊇ T1 ⊇ T2 ⊇ · · · ⊇ Tn · · ·

satisfying ´́
´́
±

∂Tn

f

´́
´́ ≥ ( 1

4
)nc and L(∂T1) = ( 1

2
)nL(∂T ) (8.1)

Next we get another estimate for |
²
∂Tn

f | using the fact that f is differentiable. Since
triangles are bounded closed sets, the intersection of the nested sequence of triangles Tn
contains a point z0 ∈ D. Since f is differentiable at z0 , for any ε > 0 there exists δ > 0

such that

0 < |z − z0| < δ implies

´́
´́ f (z) − f (z0)

z− z0

´́
´́ < ε

Hence

0 < |z− z0| < δ implies | f (z) − f (z0)− f ²(z0)(z− z0)| < ε|z− z0|

For some integer N, every point of Tn is within δ of z0 for all n≥ N. Thus

| f (z)− f (z0) − f ²(z0)(z− z0)| < ε|z − z0| for all z ∈ Tn ,n ≥ N

For z ∈ Tn , we trivially have |z− z0| ≤ L(∂Tn), so the Estimation Lemma 6.41 gives
´́
´́
±

∂Tn

[ f (z)− f (z0)− f ²(z0)(z − z0)]dz

´́
´́ ≤ εL(∂Tn) · L(∂Tn) (8.2)

But −f (z0) − f ²(z0)(z − z0) is of the form a + nz, where a,b are constants. This has
antiderivative az+ 1

2
bz2 , so (8.2) reduces to
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´́
´́
±

∂Tn

f

´́
´́ ≤ εL(∂Tn)

2

Comparing this with the earlier estimate (8.1) to get

(
1
4 )

nc ≤

´́
´
²
∂Tn

f

´́
´ ≤ εL(∂Tn)

2
= (

1
4)

n
εL(∂Tn)

2

giving

c ≤ εL(∂T )
2

But ε is arbitrary and c ≥ 0, so we must have c = 0, that is
±

∂Tn

f = 0

This theorem deserves a commentary, because its analytic presentation obscures the
fact that the basic ideas are very simple and very geometric. One is that the integral of f
is additive on contours. That is, the contributions from the subdivided contours add up
to that on the original one. The other is that a differentiable function is approximately
linear (that is, of the form a+ bz) near any point.
If it were possible to make it exactly linear, locally, then we could take a fine sub-

division making it linear on each subcontour; get zero for the integral on each subcontour
because there is an obvious antiderivative; then add all these zeros to get zero for the
original integral.
Unfortunately this is not possible, and we are faced with adding a larger and larger

number of contributions, each getting closer and closer to zero. But by estimating the

rates of growth and shrinkage, we can show that errors introduced by assuming approx-
imate linearity tend to zero fast enough to compensate for the increasing number of
subcontours.

It is an interesting exercise to rewrite the proof in a way that turns this informal

description of the argument into a formal proof that keeps the geometry to the fore.

8.2 Existence of an Antiderivative in a Star Domain

We begin with a formal definition, previewed in the introduction to this chapter:

DEFIN IT ION 8.2. A domain D is a star domain if there exists z∗ ∈ D, called a star

centre, such that for all z ∈ D the straight line segment [z∗, z] lies in D.
(A star centre need not be unique. For example, a disc is a star domain and every point

in the disc is a star centre.)

In a star domain there is an obvious candidate for an antiderivative of a function f ,

namely the integral F(z) =
²
[z∗ ,z]

f . We now show that this is indeed an antiderivative,
by applying Theorem 8.1.

THEOREM 8.3. If f is differentiable in a star domain D with star centre z∗, then F(z) =²
[z∗ ,z]

f is an antiderivative of f in D.
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Figure 8.6 These three points in a star domain form a triangle inside the domain.

Proof. The domain D is open, so for any z1 ∈ D there exists ε1 > 0 such that
Nε1 (z1) ⊆ D. If |h| < ε1 , the triangle T (z∗, z1, z1 + h) lies entirely in D, Figure 8.6.
Now Theorem 8.1 gives

±

[z∗,z1 ]

f +

±

[z1 ,z1+h]

f +

±

[z1+h,z∗ ]

f = 0

This can be written as

F(z1)+

±

[z1,z1+h]
f − F(z1 + h) = 0

or
F(z1)− F(z1 + h)

h
=

1

h

±

[z1,z1+h]
f

The proof now proceeds in the same manner as Theorem 6.44. For a constant c ∈ C,
±

[z1 ,z1+h]

c dz = ch

hence
F(z1) − F(z1 + h)

h
− f (z1) =

±

[z1,z1+h]

f (z) − f (z1)

h
dz (8.3)

By continuity of f , given ε > 0 there exists δ > 0 such that

|z− z1| < δ implies | f (z) − f (z1)| < ε

If z lies on the line segment [z1 , z1 + h],

|h| < δ implies |z− z1| < δ so | f (z)− f (z1)| < ε

The Estimation Lemma 6.41 gives
´́
´́
±

[z1 ,z1+h]

f (z)− f (z1)

h
dz

´́
´́ ≤ ε

|h|
|h| = ε

and from (8.3), if |h| < δ then
´́
´́F(z1)− F(z1 + h)

h
− f (z1)

´́
´́ ≤ ε
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Since ε is arbitrary,

lim
h→0

F(z1) − F(z1 + h)

h
= f (z1)

so F² = f .

COROLLARY 8.4. If f is differentiable in a star domain D, then
²
γ f = 0 for all closed

contours γ in D, and the integral of f between any two points in D is independent of the
choice of contour between the points.

Proof. This is an immediate deduction from Theorems 8.3 and 6.44.

8.3 An Example – the Logarithm

In Example 6.37 we showed that the integral of 1/z from −1 to 1 depends on the path
between those points. We now examine how to restrict the domain to get round this
problem. Later we describe a more elegant approach.
The function 1/z is differentiable in the domainC \ {0}, but this is not a star domain;

moreover, there is no antiderivative on this domain. However, if we restrict the function
to any star domain D ⊆ C \ {0}, the results of the previous section apply in D. It is easy
to see that the cut plane Cπ is a star domain, with star centre z∗ = 1. Figure 8.7 makes

this clear geometrically, and a rigorous proof is straightforward.
Because 1/z is differentiable in Cπ it has an antiderivative there, the principal value

of the logarithm, which satisfies

Log z1 =

±

[1,z1]

1

z
dz

We exploit the fact that this integral is independent of the path, provided the path is
contained in Cπ , and integrate along a specially chosen contour that is not the line
segment [1, z1]. Instead we proceed as follows. Let z1 = reiθ where r > 0,−π < θ < π ,

Figure 8.7 The cut plane Cπ is a star domain with star centre z∗ = 1.
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Figure 8.8 A more convenient path to integrate 1/z in Cπ .

and define γ = γ1 + γ2 where γ1 is the line segment [1, r] and γ2(t) = reit (t ∈ [0, θ ]).

See Figure 8.8.
Then

Log re
iθ
=

±

γ1

1

z
dz+

±

γ2

1

z
dz

=

± r

1

1

t
dt +

± θ

1

1

reit
dt

= log r + iθ

This gives an alternative approach to the complex logarithm. In particular, it provides a
far more satisfying proof of the continuity of the argument in the cut plane Cπ than the
prosaic version given in Section 7.2. Namely: the function Log is differentiable in Cπ ,

hence continuous, so its imaginary part (which is the argument of z) is also continuous
there.

8.4 Local Existence of an Antiderivative

Let f be differentiable in an arbitrary domain D. We know that f may not have an
antiderivative that works throughout D. But D is open, so for any z0 ∈ D there is an
open disc Nr(z0) ⊆ D. A function F : Nr(z0) → C such that F²(z) = f (z) for all
z ∈ Nr(z0) is called a local antiderivative of f . A disc is a star domain, so Theorem 8.3
tells us that f has a local antiderivative in every disc in D.

This immediately simplifies integration of a differentiable function along an arbitrary
contour, because we can integrate along a step path instead:

LEMMA 8.5. If γ is a contour from z0 to z1 in a domain D, then there exists a step path
σ from z0 to z1 in D such that

²
γ f =

²
σ f for every function f that is differentiable in D.

Proof. By the Paving Lemma 2.33, γ = γ1 + · · · + γn where each γr lies in a disc
Dr ⊆ D. Let σr be a step path in Dr from the initial point of γr to its final point. Then
by Corollary 8.4, in the star domain Dr , we have

²
γr
f =

²
σr
f . Now σr = σ1 + · · · + σr

is a step path from z0 to z1 inD, as in Figure 8.3, and
±

γ

f =

n³

r=1

±

γr

f =

n³

r=1

±

σr

f =

±

σ

f
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8.5 Cauchy’s Theorem

We build up to Cauchy’s Theorem in stages. First, consider a rectangle

R = {x+ iy ∈ C : a ≤ x ≤ b, c ≤ y ≤ d}

with boundary contour

∂R = [z1 , z2] + [z2 , z3] + [z3 , z4] + [z4 , z1]

where z1 = a+ ic, z2 = b+ ic, z3 = b+ id, z4 = a+ id, as in Figure 8.9.

LEMMA 8.6. If D is a domain, f is differentiable in D, and R ⊆ D, then
²
∂R f = 0.

Proof. Insert the opposite diagonal contours [z1, z3] and [z3 , z1]. Use Cauchy’s Theorem
for a triangle, Theorem 8.1, twice, and add. The integrals along the two diagonal paths
cancel. See Figure 8.10.

Now we take an arbitrary closed step path σ and insert extra line segments to make

up a collection of rectangles. To do this, extend all horizontal and vertical line seg-
ments of σ to infinity, breaking the plane into a finite number of rectangles, some

finite, R1 , . . . ,Rk, and some infinite, Rk+1 , . . . , Rm. (What we mean by ‘rectangle’ in

Figure 8.9 Contour defined by the boundary of a rectangle.

Figure 8.10 A rectangular contour is the sum of two triangular contours.
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Figure 8.11 Extending the edges of a step path to tile C with finite or infinite rectangles.

the infinite case is clear from the figure. A ‘side at infinity’ is missing.) Figure 8.11
shows an example where k = 9,m = 25.

In the interior of each Rn choose a point zn , and define

νn = w(σ , zn)

This is independent of the choice of zn in Rn because the interior of Rn is connected.
Say that Rn is relevant if νn ±= 0. Then Rn is relevant only when σ winds round it.

In particular, all of the infinite rectangles Rk+1 , . . . ,Rm are irrelevant, because they lie
in the infinite component of the complement of σ . (In Figure 8.11 the only relevant
rectangles are R3 ,R5 ,R7, R8.)

We now demonstrate that σ can be expressed in terms of the boundary contours of
relevant rectangles, by taking νn copies of each boundary ∂Rn when νn > 0, and −νn
copies of each −∂Rn when νn < 0.

For instance, in Figure 8.11 we take −∂R3, ∂R5 , ∂R7, ∂R8 . Cancelling the opposite
segments common to ∂R5, ∂R8 and to ∂R7 , ∂R8 we finish up with the step contour σ .
To show this works with an arbitrary closed step path σ , it is convenient to use the

notation nγ to represent n copies of γ when n ≥ 0 and −n copies of −γ when n < 0.

The most straightforward procedure is to start with the set of contours

A = {−σ , ν1∂R1 , . . . , νk∂Rk }

and show that the cancellation of opposite line segments L,−L, wherever they occur,
removes them all.
To prove this, suppose that when as many pairs as possible have been cancelled,

There remain q ±= 0 copies of some line segment L. Then L is a side of at least one finite
rectangle Rs, and by allowing q to be negative if necessary, we may suppose that L is

traced in the same direction as ∂Rs. Let Rr be the rectangle on the other side ofL (which

may be a finite rectangle or an infinite one), as in Figure 8.12.
The set of closed contours

B = A∪ {−q∂Rs}
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Figure 8.12 Rectangles either side of L.

then simplifies to have no copies of L. If we compute the winding numbers of the con-
tours in B round zs ∈ Rs and zr ∈ Rr , then the absence of L from the simplified set of
contours tells us that the two winding numbers are the same. But the winding number

round zs is

ν1w(∂R1 , zs) + · · · + νkw(∂Rk, zs)− w(σ , zs) − qw(∂Rs , zr) = −q

and around zr it is

ν1w(∂R1, zr)+ · · · + νkw(∂Rk, zr)− w(σ , zr)− qw(∂Rs, zr) = 0

Hence q = 0 as required.
This confirms that σ may be obtained by taking νn copies of each relevant contour

∂Rn and deleting opposite line segments wherever they occur.

LEMMA 8.7. Let σ be a closed step path in a domain D such that w(σ , z) = 0 for all
z ±∈ D. Then, for any function f differentiable in D, we have

²
σ f = 0.

Proof. We express σ in terms of relevant rectangles, as above, and show that every
relevant rectangle Rn must lie inside D. By definition, if z lies in the interior of Rn then
w(σ , z) = νn ±= 0 so z ∈ D. On the other hand, a point z on the boundary ∂Rn either lies
on σ (and hence in D) or it is in the same component of the complement of σ as points
in the interior of Rn, whence w(σ , z) = νn ±= 0 and again z ∈ D.

By cancelling contributions along opposite contours,
±

σ

f =

k³

n=1

νn

±

∂Rn

f

Integrals on the right need be considered only when νn ±= 0, in which case Rn is relevant
so lies inside D. Then, by Lemma 8.6,

±

∂Rn

f = 0

and
²
σ
f = 0.

We now reach the focal point of this chapter:

THEOREM 8.8 (Cauchy’s Theorem). Let f be differentiable in a domain D and let γ be

a closed contour in D that does not wind round any points outside D (that is, w(γ , z) = 0

when z ±∈ D). Then
²
γ f = 0.
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Proof. By Lemma 8.5 there exists a step path σ in D such that
²
σ
φ =

²
γ
φ for any

function φ that is differentiable in D. In particular,
²
σ f =

²
γ f .

For z0 ±∈ D the function φ(z) = 1/(z − z0) is also differentiable in D, so

w(σ , z0) =
1

2π i

±

σ

φ =
1

2π i

±

γ

φ = w(γ , z0) = 0

By Lemma 8.7,
²
σ f = 0. Hence

²
γ f =

²
σ f = 0.

8.6 Applications of Cauchy’s Theorem

The version of Cauchy’s Theorem that we have just proved has far wider applications
than simply showing that integrals round certain closed contours must be zero. It lets us
calculate non-zero integrals as well. For example, suppose that γ1 and γ2 have the same

winding number round all points outside D, so that w(γ1, z) = w(γ2, z) when z ±∈ D. Let
z1 be the point where γ1 begins and ends, and let z2 be the point where γ2 begins and
ends. Take any contour σ from z1 to z2 inD, Figure 8.13.

Figure 8.13 Creating a closed path from two paths.

Let γ = γ1 + σ − γ2 − σ . This is a closed contour in D, and w(γ , z) = 0 for
z ±∈ D because the winding number is additive. By Cauchy’s Theorem,

²
γ
f = 0.

Therefore ±

γ1

f +

±

σ

f −

±

γ2

f −

±

σ

f = 0

and ±

γ1

f =

±

γ2

f

If we wish to compute
²
γ1
f , we may be able to find another contour γ2 as above, for

which
²
γ2
f is simpler.

The technique of introducing opposite contours σ ,−σ whose contributions eventually
cancel is also very useful. In particular, it lets us prove a much more powerful Cauchy-
type theorem:
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Figure 8.14 Joining a set of closed contours to form a single closed contour.

THEOREM 8.9 (Generalised Version of Cauchy’s Theorem). Suppose that γ1 , . . . ,γn
are closed contours in a domain D such that

w(γ1, z) + · · · +w(γn , z) = 0 for all z ±∈ D

and let f be differentiable in D. Then
±

γ1

f + · · · +
±

γn

f = 0

Proof. Suppose that γr begins and ends at zr (1 ≤ r ≤ n). Choose any z0 ∈ D and

contours σ1, . . . ,σn in D that join z0 to z1, . . . , zn respectively, Figure 8.14.
Then

γ = σ1 + γ1 − σ1 + · · · + σn + γn − σn

is a closed contour beginning and ending at z0, and

w(γ , z) = 0 for all z ±∈ D

(again, by additivity of the winding number). By Cauchy’s Theorem,
²
γ
f = 0, so

n³

r=1

±

σr

f +

±

γr

f −

±

σr

f = 0

Therefore
n³

r=1

±

γr

f = 0

8.6.1 Cuts and Jordan Contours

Given two closed contours γ1 ,γ2 in D and a contour σ in D from a point on γ1 to a
point on γ2 , we call the pair of contours σ ,−σ a cut from γ1 to γ2. There is a historical
reason for this name. Earlier versions of Cauchy’s Theorem were invariably proved for
Jordan contours. A closed Jordan contour is a closed contour γ : [a, b]→ C that does
not cross itself. That is,

a≤ t1 < t2 < b implies γ (t1) ±= γ (t2)
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It is intuitively obvious, but difficult to prove analytically, that every closed Jordan con-
tour γ separates the plane into two components, the points O(γ ) outside γ and the points
I(γ ) inside γ , and that these are both connected sets, Figure 8.15.
Early versions of Cauchy’s Theorem state that if γ and I(γ ) lie inD, then

²
γ
f = 0. In

applications it was then necessary to introduce ‘cuts’ to manufacture Jordan contours.
For instance, suppose that f is differentiable everywhere except at z0 and two Jordan
contours γ1,γ2 both wind once round z0 as in Figure 8.16 (left). Two cuts are made in
Figure 8.16 (right) to create two new Jordan contours so that f is differentiable inside
each of them. The integral round each new Jordan contour is then zero, and cancelling
the contributions from the cuts we get

²
γ1
f =

²
γ2
f . Such methods usually relied on

geometric intuition, sometime unsupported by analytic proof.
By introducing the winding number to link analysis to geometry, such pitfalls can be

avoided, and there is no longer any necessity to restrict the theory to Jordan contours.
Instead we can define the inside of any closed contour to be

I(γ ) = {z ∈ C : w(γ , z) ±= 0}

and the outside to be

O(γ ) = {z ∈ C : w(γ , z) = 0}

Figure 8.15 Closed Jordan contour and its inside and outside.

Figure 8.16 Left: Two Jordan contours. Right: ‘Rewiring’ the contours using cuts.
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Figure 8.17 Inside and outside components of the complement of a closed contour.

In general, neither I(γ ) nor O(γ ) need be connected. For example, in Figure 8.17,O(γ )
has two components O1 and O2 , and I(γ ) has three, I1 , I2 , and I3 .
The Jordan Contour Theorem (which we do not prove, but see Exercise 9 below for

the step path case) then says that the outside and inside of a closed Jordan contour are
both connected.
For an arbitrary closed contour we can rephrase Cauchy’s Theorem as stated in

Theorem 8.8 to get:

THEOREM 8.10. Let f be differentiable in a domain D. If a closed contour γ and its
inside I(γ ) lies in D, then

²
γ
f = 0.

8.7 Simply Connected Domains

Theorem 6.44 states that if D is a domain and f : D → C is differentiable in D, then²
γ
f = 0 for all closed contours γ in D if and only if f has an antiderivative in D. We

can now state the precise conditions under which this happens for all functions f that
are differentiable in D.

DEFIN IT ION 8.11. A domain D is simply connected if w(γ , z) = 0 for every closed
contour γ in D and every z ±∈ D.

Equivalently, I(γ ) ⊆ D for every closed contour γ inD.

Intuitively, a domain is simply connected if it has no holes.
We now have:

THEOREM 8.12. If D is a domain, then
²
γ
f = 0 for all closed contours γ in D, if and

only if D is simply connected.

Proof. If D is simply connected then Cauchy’s Theorem implies that
²
γ
f = 0 for any

closed contour γ in D and any f : D → C that is differentiable in D. Conversely, if
D is not simply connected, there exists a closed contour γ0 in D and z0 ∈ D such that
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w(γ0, z0) ±= 0. Let φ(z) = 1/(2πi(z− z0)). Then φ : D → C is differentiable in D and²
γ φ = w(γ0, z0) ±= 0.

8.8 Exercises

1. State which of the following are star domains, proving the existence of a star centre
for those that are, and justifying your answer for those that are not.
(i) {z ∈ C : z ±= x+ 0i where |x| ≥ 1}

(ii) {z ∈ C : |z| > 1}

(iii) {z ∈ C : z ±= eit for t ∈ [0,π ]}

(iv) {z ∈ C : |z| > 1 and either im z > 0 or re z > 0}

2. Let D = C \ {0}. For z0 ∈ D, specify a local antiderivative in some neighbourhood
of z0 for each of the following functions:
(i) 1/z
(ii) 1/z2
(iii) (z+ 1)/z2

(iv) (cos z)/z
(v) (sin z)/z

3. Let

γ1(t) = −1+ 1
2
eit (t ∈ [0, 2π ])

γ2(t) = 1+ 1
2
eit (t ∈ [0, 2π ])

γ (t) = 2e−it (t ∈ [0, 2π ])

If f (z) = 1/(z2 − 1) use Theorem 8.9 to deduce that
±

γ

f =

±

γ1

f +

±

γ2

f

Interpret this statement in terms of the winding numbers of γ ,γ1,γ2 round 1,−1.
4. Show that D = {z ∈ C : z ±= ³1} is not simply connected. Let

L1 = {x + iy ∈ C : y = 0, x ≤ −1}
L2 = {x + iy ∈ C : y = 0, x ≥ 1}

D0 = D \ {L1 ∪ L2)

Show thatD0 is simply connected. Is it a star domain? Does f (z) = 1/(z2− 1) have
an antiderivative in D0? In each case justify your answer.

5. Prove that every quadrilateral whose edges do not cross is a star domain. What about
pentagons? Hexagons?

6. Let D = {z ∈ C : z ±= ³i} and let γ be a closed contour in D. Find all the possible
values of

²
γ
1/(z2 + 1)dz. If σ is a contour from 0 to 1, find all possible values of

²
σ 1/(z

2 + 1)dz.
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7. Let γ1 = S1 + L− S2 − L,γ2 = S1 + L+ S2 − L, where

S1(t) = eit (t ∈ [0, 2π])
S2(t) = 2eit (t ∈ [0, 2π ])

L= [1, 2]

Describe the inside and outside of γ1 and γ2.
Let f (z) = (cos z)/z, By writing cos z as a power series and considering f (z) =

(1/z) + g(z), or otherwise, compute
²
γ1
f and

²
γ2
f . Compare the results with

Theorem 8.10.
8. Let D = {z ∈ C : z ±= z1 , . . . , z ±= zk} where zj ∈ C, and suppose that f is

differentiable in D. Show that for any closed contour in D,

±

γ

f =

k³

r−1

nr

±

Sr

f

where Sr is a sufficiently small circle centre zr and nr is an integer.
If limz→zr(z − zr)f (z) = ar ∈ C for r = 1, . . . , k, show that

±

γ

f =

k³

r−1

2π inrar

9. Jordan Contour Theorem for Step Paths. Define a crossing of a closed step path
σ : [a, b] →D to be a point σ (t1) in the image of σ , such that

σ (t1) = σ (t2) (a ≤ t1 < t2 < b)

Say that σ is simple if it has no crossings.
Prove the Jordan Contour Theorem for step paths: Let σ be a simple closed step

path inC. Then
(i) C \ σ̂ has precisely two connected components. One (call it I(σ )) is bounded,

the other (call it O(σ )) is unbounded.
(ii) Either w(σ , z) = 1 for all z ∈ I(σ ), or w(σ , z) = −1 for all z ∈ I(σ ).

(iii) If z ∈ O(σ ), then w(σ , z) = 0.

10. Cauchy’s Theorem for a Simple Closed Step Path. Prove Cauchy’s Theorem for
a simple closed step path σ : If σ does not wind round any point not in D, then²
σ f = 0.

Hint: One way to do this is as follows:
(1) Construct a set of rectangles Rr as in Section 8.4.
(2) Prove that a rectangle Rr is relevant if and only if it lies in I(σ ).

(3) Prove that I(σ ) ⊆ D, observing that by definition I(σ ) winds around any point
in I(σ ).

(4) Prove that
²
Rr
f = 0, by observing that Rr is a star domain.

(5) Define a closed path τr round the boundary of each rectangle, having the same

winding number as σ round any point inside the rectangle. (This is either always
1 or always −1 by Exercise 9 (ii).)
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(6) Show that
³

r

±

Rr

f =

±

σ

f

because edges of the Rr that are not contained in the image of σ cancel is pairs.
(7) Deduce Cauchy’s Theorem for σ .

11. Suppose that σ1, σ2 are simple closed step paths in C, and that the image of σ1 is

contained in I(σ2). Prove that I(σ1) ⊆ I(σ2).



9 Homotopy Versions of Cauchy’s
Theorem

The results in this chapter are not essential for any later parts of the text, except for
Chapter 16.

Cauchy’s Theorem is one of the foundation stones of complex analysis. It resolves
two apparently conflicting features of contour integrals

±
γ f when f is fixed but γ can

change. On the one hand, γ can be altered in fairly drastic ways with no effect on
the integral – for instance, replacing a general path by a step path. On the other hand,
changing a semicircular path in the upper half-plane of C into a semicircular path in the
lower half-plane of C completely changes the integral of 1/z between −1 and 1, as in
Section 6.10.
The version of Cauchy’s Theorem in Theorem 8.8 explains these features: what really

matters is the winding number of γ around points that lie outside the domain D of f .

This result emphasises the topology of the domain, and how the path lies within it.
To improve our understanding, we examine these topological issues in more detail. In
fact, we do so in two ways. In this chapter we consider continuous deformations of
γ , captured by the topological notion of homotopy. In Chapter 16 we discuss a related
concept, homology. Both concepts formalise the idea that the domain D has ‘holes’,
and the integral depends on how the path wanders around the domain, relative to these
holes. However, they do this in two different, though related, ways. Homotopy is easier
to visualise and geometrically quite natural. Homology is algebraically simpler, once
some initial difficulties have been overcome, but it can appear artificial and contrived.
We reformulate Cauchy’s Theorem from these two viewpoints. Each offers fresh

insights. We also show that an arbitrary path γ in a domain D can be replaced by a
suitable approximating polygon without changing the integral of any function that is
differentiable in D. This generalises Cauchy’s Theorem so that it applies to any closed
path, removing the ‘piecewise smooth’ condition required of a closed contour.

9.1 Informal Description of Homotopy

Homotopy is one of the central ideas in topology. It describes topological features of
spaces in terms of families of continuously varying paths. For example, consider the
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Figure 9.1 Deforming the semicircular path γ0 continuously into γ1 .

anticlockwise semicircle γ0 in C from 1 to −1 defined by

γ0(t) = eit (t ∈ [0,π ])

and the clockwise semicircle γ1 in C from 1 to−1 defined by

γ1(t) = e−it (t ∈ [0,π])

Figure 9.1 shows visually that we can deform γ0 into γ1 by displacing it vertically. In
formulas, let

γs(t) = (1− s)eit + se−it

Then γ0 and γ1 are the two semicircular paths, and the path γs varies continuously as s
varies continuously from 0 to 1.
However, if the paths are not allowed to pass through the origin ( for example, they

may be paths in the domain of a function that has a singularity at the origin, such as 1/z),
this continuous deformation is not permitted, because γ1/2 passes through the origin at
t = π/2. A little experiment strongly suggests that no continuous deformation from
γ0 to γ1 exists if no intermediate path meets the origin. The origin is an obstacle to
deforming the path, and any attempt to do so causes the path to get ‘hung up’ at the
origin. The origin creates a hole, and the path cannot cross the hole.
This suggestion is in fact true, but a proof requires some care: it can, for example,

be based on properties of the winding number. Indeed, the winding number is a simple

example of a homotopy invariant: a way to distinguish topologically different spaces
using notions of homotopy.

In this chapter we apply homotopy ideas to complex integration by considering what
happens to

±
γ f when we allow the contour γ to vary continuously. We derive precise

conditions under which γ can be deformed continuously without changing the integral.
This can be done in two ways. One is to fix the end points z0, z1 and allow the contour
between them to be continuously deformed. The other is to perform a continuous defor-
mation of a closed contour. In both cases the deformations must keep the path inside a
domain D on which f is differentiable. Figure 9.2 illustrates these two possibilities.
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Figure 9.2 Two types of continuous deformation of a contour. Left: Keeping end points z1 ,z2 of γ
fixed. Right: Deforming a closed contour γ .

Both of these methods are special cases of a single result, The Cauchy Theorem for
a boundary, which is proved in Section 9.3. Before this, in Section 9.2 we show how
the conditions on γ can be relaxed when f is differentiable to define

±
γ
f along any path

(recall that a contour is piecewise smooth). This lets us vary γ freely without having to
worry whether the intermediate paths involved are contours.

9.2 Integration Along Arbitrary Paths

Suppose that f : D → C is differentiable in the domain D. Up to now we have usually
integrated such a function along a contour in D – a piecewise smooth path. However,
because differentiable functions, are fairly well behaved, the precise path taken turns
out not to be so important. We saw this in Lemma 8.5, where we were able to replace
a contour by a step path and get the same result. We can use the same technique to
define an integral along an arbitrary path γ : [a,b]→ D. This definition agrees with the
Riemann integral if that happens to be defined – an application of Cauchy’s Theorem
that we leave to the interested reader.
The Paving Lemma gives a partition a = t0 < t1 < · · · < tn = b such that each

subpath γr defined on [tr−1, tr] lies in a discDr ⊆ D. Let λ be the approximating polygon
λ = λ1+· · ·+λn , where λr is the line segment from γ (tr−1) to γ (tr). Then λr lies inside
Dr for all r, so λ lies inside D, and we can define the integral of f along γ to be

²

γ

f =

²

λ

f

See Figure 9.3.
This definition can be proved to be independent of the choice of the partition that

determines λ, provided these are chosen using the Paving Lemma as described above.
For if extra division points are introduced between tr−1 and tr, say

tr−1 < s1 < · · · < sk < tr

then γ (s1) , . . . ,γ (sk) ∈ D so the integral of f along λr has the same value as that along
the polygon with vertices γ (tr−1),γ (s1) , . . . ,γ (sk), γ (tr), by Theorems 6.33 and 8.3.
See Figure 9.4.
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Figure 9.3 Replacing a continuous path by a polygonal one.

Figure 9.4 Subdividing a polygonal path inside a disc in D.

Thus a finer partition of [a,b] does not change the integral. Given any two polygonal
approximations λ,µ obtained using the Paving Lemma, let ν be the polygon whose
vertices are those of λ, µ taken together. Then

±
λ f =

±
ν f =

±
µ f , so the definition of

the integral is independent of the polygonal approximation – provided that is chosen
using the Paving Lemma.
An arbitrary polygonal approximation to γ will not do. In Figure 9.5, suppose that

D = C \ {z0}. The polygon λ with vertices z1, z2 , z3 , z4 , z5, z6, z7 is an approximation
to γ found using the Paving Lemma, but the polygon with vertices z1, z6, z7 is not. If
f = 1/(z− z0) then

±
λ f −

±
µ f = 2π i, so

±
λ f ±=

±
µ f .

It is straightforward to check that Theorems 8.8, 8.9, 8.10, and 8.12 of Chapter 8
also hold for arbitrary paths, however wild – even ‘space-filling’ curves, Section 2.9.
For instance, if f is differentiable in D and does not wind round points outside D, then±
γ f = 0. With such results at our disposal we can widen the scope of our ideas and
introduce general notions from topology. These provide further insight into the vari-
ous versions of Cauchy’s Theorem and how they relate to each other. We return to the
topological theme and develop it further in Chapter 16, using results from Section 9.3.
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Figure 9.5 A different polygon can lead to a different value for the integral.

Figure 9.6 A rectangle and the path formed by its perimeter.

9.3 The Cauchy Theorem for a Boundary

The formal definition of homotopy (Definition 9.7 below) uses a map from a rectangle
into C. The top and bottom edges of the rectangle determine two paths, and parallel
segments of its interior determine a continuous deformation of one path into the other.
We therefore begin by considering maps defined on rectangles, and properties of their
boundaries.

Let R be the rectangle

R = {x+ iy ∈ C : a ≤ x ≤ b, c ≤ y ≤ d}

with boundary contour ∂R, Figure 9.6. (Here a ≤ b and c ≤ d are real.) Suppose
that ∂R : [0,p] → C is parametrised by arc length, measured anticlockwise, where
p = 2(b− a)+ 2(d− c) is the perimeter of R, Figure 9.7.
Given a continuous map φ : R→ C, we define the boundary of φ to be

∂φ(t) = φ(∂R(t)) (t ∈ [0, p])
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Figure 9.7 Parametrising the perimeter by arc length.

Figure 9.8 Boundary of the map φ in Example 9.2.

Example 9.1. If φ(x+ iy) = xeiπy (a ≤ x ≤ b, c ≤ y ≤ d) then ∂φ = ±1+±2+±3+±4

as in Figure 9.8.

REMARK 9.2. Here we are using notation in a flexible way by writing ±j for the image

of ±j. Technically this is sloppy, but it avoids undue proliferation of ‘image’ symbols.

Once we understand that a path differs from its image, we have earned the right to be
sloppy. We exert that right repeatedly.

Example 9.3. Let R = {x+ iy : 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}. For x + iy ∈ R and x + y ≥ 1,

define φ(x+ iy) = x + iy, and for x+ iy ∈ R and x + y < 1, define φ(x+ iy) to be the
reflection of x+ iy in the line x + y = 1. Then the effect of φ is to fold over the bottom
left-hand corner of R as in Figure 9.9. This shows that the image of ∂φ need not be the
boundary of the image φ(R).

However, Figure 9.9 provides the clue that all points inside ∂φ lie in the image φ(R).

We prove this is true in general:

LEMMA 9.4. If φ : R→ C is continuous, then I (∂φ) ⊆ φ(R).
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Figure 9.9 Boundary of the map φ in Example 9.3.

Proof. Suppose to the contrary that there exists z0 ∈ I(∂φ) but z0 ±∈ φ(R). Let D = C \

{z0}. Then D is a domain and φ(R) ⊆ D. If f (z) = 1/(2πi(z− z0)) then f is differentiable
in D and ²

∂φ

f = w(∂φ, z0)

is a non-zero integer.
Subdivide the rectangle R by its vertical and horizontal bisectors into four equal

rectangles R(1) ,R(2), R(3), R(4) and let φ(r) be the restriction of φ to R(r) . Then for
r = 1, 2, 3, 4 the boundaries ∂φ(r) are all closed paths inD. Because

²

∂φ

f =

4³

r=1

²

∂φ (r)

f and

²

∂φ (r)

f = w(∂φ(r), z0)

at least one of the four integrals is a non-zero integer. Denote the corresponding rectan-
gle R(r) by R1 and the restriction of φ to R1 by φ1. Similarly dividing R1 into four equal
rectangles and repeating the process yields a nested sequence of rectangles

R ⊇ R1 ⊇ · · · ⊇ Rn ⊇ · · ·

where each
±
∂φn

f is a non-zero integer.
The sequence of rectangles contains a (unique) point z1 ∈ R. For ε = |φ(z1)− z0|, we

have Nε (φ(z1) ⊆ D. By continuity of φ there exists δ > 0 such that

φ(Nδ (φ(z1)∩ R) ⊆ Nε(φ(z1))

For suitably large N we have RN ⊆ Nδ(φ(z1)), so ∂φN is a closed path in the disc
Nε (φ(z1)). But f is differentiable in Nε(φ(z1)), a star domain,. So

±
∂φN

f = 0 by
Corollary 8.4, contradicting

±
∂φn

f being a non-zero integer.

We can now prove an important variant of Cauchy’s Theorem. But first (having
decided not to rely on the topological notion of compactness) we need a two-
dimensional analogue of the Paving Lemma.

PROPOSIT ION 9.5. Let R be a rectangle and let φ : R → D be a continuous map,
with D ⊆ C a domain. Let R be divided into n2 smaller rectangles, by subdividing its
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sides into n equal parts. Then for sufficiently large n, the image of every subrectangle is
contained in some disc in D.

Proof. The proof uses the same ideas as that of Lemma 2.33. Say that a rectangle is
pavable if if it can be bisected repeatedly a finite number of times into closed subrect-
angles, so that the image of every subrectangle obtained in this manner lies inside a disc
in D. Otherwise, the interval is unpavable.
Suppose the result is false. Then R is unpavable. Split it into four closed subrectangles

by bisecting the sides. At least one these subrectangles, call it R1, must be unpavable.
Bisect R1 to obtain an unpavable rectangle R2 , and so on. This sequence continues
indefinitely because we are assuming the result false, so we get a nested sequence of
rectangles

R ⊇ R1 ⊇ R2 ⊇ · · ·

each half the size of the previous one. The intersection of these rectangles is a unique
point z0 ∈ R.

However, D is open so there is a disc Nε(φ(z0)) ⊆ D. If k is large enough, Rk ⊆
Nε (φ(z0)), a contradiction.
Now take n = 2k.

THEOREM 9.6 (Cauchy’s Theorem for a Boundary). If φ : R→ D is a continuous map
from a rectangle R into a domain D, as in Figure 9.10, and f is differentiable in D, then

²

∂φ

f = 0

Proof. Cut R up into smaller rectangles Rpq by dividing it into n equal parts horizontally
and vertically, where 1 ≤ p ≤ n, 1 ≤ q ≤ n. By Proposition 9.5 this can be done so that
each φ(Rpq) is contained in a disc Dpq ⊆ D. See Figure 9.11.
Let φpq be the restriction of φ to Rpq . Then its boundary ∂φpq is a closed path in the

disc Dpq ⊆ D, so
²

∂φpq

f = 0

Figure 9.10 Effect of map φ on rectangle R.
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Figure 9.11 Subdividing the rectangle R, and the effect of φ .

Adding up all the integrals for 1 ≤ p ≤ n, 1 ≤ q ≤ m, and cancelling integrals along
opposite paths inside φ(R), we are left with

²

∂φ

f = 0

9.4 Formal Definition of Homotopy

A ‘homotopy’ between two paths γ0 : [a, b] → D and γ1 : [a,b] → D is, roughly
speaking, a continuously varying family of paths γs : [a,b] → D, where s runs over the
interval [0, 1]. At the start, s = 0 and γs = γ0; at the end, s = 1 and γs = γ1.

How do we make this precise? Notice that the whole family depends on two variables:
the parameter, s, and the original variable t giving the position on the path. We can
combine everything into a single function γ of (t, s) if we set

γ (t, s) = γs(t) (t ∈ [a,b], s ∈ [0, 1])

It is then natural to insist that γ , as a function of two real variables, should be continuous.
We are thus led to:

DEFIN IT ION 9.7. A homotopy inD between γ0 and γ1 , as above, is a continuous map

γ : [a,b]× [0, 1]→ D

such that

γ (t, 0) =γ0(t) for all t ∈ [a,b]

γ (t, 1) =γ1(t) for all t ∈ [a,b]

We illustrate this idea in Figure 9.12. Note that we do not (yet) assume that γ0 and γ1
have the same start or end points.
It will prove convenient to think of [a,b]× [0, 1] as a subset ofC, by identifying (t, s)

with t + is.

Figure 9.12 captures well the continuous variation of γs, but it is misleadingly nice in
that γ is one-one. There is no reason to require this in general, so a perfectly reasonable
homotopy could resemble Figure 9.13.
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Figure 9.12 A homotopy between two paths γ0 and γ1.

Figure 9.13 A homotopy that is not one-one between two paths γ0 and γ1.

Geometrically, of course, [a,b] × [0, 1] is a rectangle, and its boundary is a closed
path, with corners. If we parametrise the four edges of the rectangle in some way, and
then use γ to map the result into D, we obtain paths in D that join up to give a closed
path, as for example in Figure 9.12.
Our aim is to apply Cauchy’s Theorem for a boundary to this set of paths. Now,

there is a problem: the two edges that give γ0 and γ1 are obviously useful, but the other
two edges, marked ρ , τ in Figure 9.12, are going to be a nuisance. We therefore add
conditions that eliminate them. There are two obvious ways to do this:

(a) Insist that each of ρ and τ goes to a single point in D.
(b) Insist that ρ and τ cancel each other out.

These two conditions yield two more restricted types of homotopy: fixed end point
homotopy, and closed path homotopy. We describe these in detail in the next two
sections.
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9.5 Fixed End Point Homotopy

Consider the rectangle

R = {t + is ∈ C : t ∈ [a, b], s ∈ [0, 1]}

DEFIN IT ION 9.8. Two paths γ0 : [a, b] → D and γ1 : [a,b] → D are fixed end point
homotopic in D if there is a continuous map

φ : R→ D

and points z0, z1 ∈ C such that

φ(t, 0) = γ0(t) for all t ∈ [a,b]

φ(t, 1) = γ1(t) for all t ∈ [a,b]

φ(s, 0) = z0 for all s ∈ [0, 1]
φ(s, 1) = z1 for all s ∈ [0, 1]

as in Figure 9.14.

If we let γs(t) = φ(t, s) then γs is a path in D from z0 to z1 for all s ∈ [0, 1], and as s
increases continuously from 0 to 1, the path γs ‘deforms continuously’ from γ0 to γ1.

Example 9.9. Let D = {z ∈ C : |z| < 2},γ0(t) = t (t ∈ [−1, 1]), γ1(t) =
e
1
2
π i(t − 1)

(t ∈ [−1, 1]). Then γ0 and γ1 are fixed end point homotopic in D, where

φ(t, s) = (1− s)γ0(t) + sγ1(t) (t ∈ [−1, 1], s ∈ [0, 1])

Figure 9.14 A fixed end point homotopy.
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Figure 9.15 A fixed end point homotopy between γ0 and γ1 .

As a corollary of Theorem 9.6 we deduce:

THEOREM 9.10. If f is differentiable in a domain D and γ0 is fixed end point homotopic
in D to γ1, then

±
γ0
f =

±
γ1
f .

Proof. We have a continuous map φ : R→ D where

φ(t, 0) = γ0(t) for all t ∈ [a,b]

φ(t, 1) = γ1(t) for all t ∈ [a,b]

φ(0, s) = z0 for all s ∈ [0, 1]
φ(1, s) = z1 for all s ∈ [0, 1]

as in Figure 9.15.
If pr : [0, 1] → D is the path pr(t) = zr for r = 0, 1, whose image is a single point

{zr}, then
±
pr
f = 0 and ∂φ = γ0+ p1− γ1+ p0 . By Cauchy’s Theorem for a boundary,

²

∂φ

f =

²

γ0

f +

²

p1

f −

²

γ1

f +

²

p0

f = 0

so ²

γ0

f =

²

γ1

f

9.6 Closed Path Homotopy

Once more we consider the rectangle

R = {t + is ∈ C : t ∈ [a, b], s ∈ [0, 1]}

but we impose different conditions on φ:

DEFIN IT ION 9.11. Two (closed) paths γ0 : [a,b] → D and γ1 : [a,b] → D are

homotopic via closed paths in D if there is a continuous map

φ : R→ D
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such that

φ(t, 0) = γ0(t) for all t ∈ [a, b]

φ(t, 1) = γ1(t) for all t ∈ [a, b]

φ(a, s) = φ(b, s) for all s ∈ [0, 1]

as in Figure 9.16.

Figure 9.16 Homotopy via closed paths.

Again, if we define γs(t) = φ(t, s) then γs is a closed path inD for all s ∈ [0, 1], and as
s increases continuously from 0 to 1, the path γs ‘deforms continuously’ from γ0 to γ1.

Example 9.12. For |z0| < K, let D = {z ∈ C : |z| < K, z ±= z0}. For |z0| < ρ < K, let
γ0(t) = ρeit (t ∈ [0, 2π]), and for 0 < ε < K − |z0| let γ1(t) = z0 + εeit (t ∈ [0, 2π ]),
as in Figure 9.17. Then γ0 is homotopic to γ1 via closed paths inD, where

φ(t, s) = (1− s)γ0(t)+ sγ1(t) (t ∈ [0, 2π ], s ∈ [0, 1])

Figure 9.17 Homotopy between the closed paths in Example 9.12.
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THEOREM 9.13. If f is differentiable in a domain D and closed paths γ0 , γ1 in D are
homotopic via closed paths in D, then

±
γ0
f =

±
γ1
f .

Proof. We have a continuous map φ : R→ D such that

φ(t, 0) = γ0(t) for all t ∈ [a, b]

φ(t, 1) = γ1(t) for all t ∈ [a, b]

φ(a, s) = φ(b, s) for all s ∈ [0, 1]

Let σ (s) = φ(a, s) (s ∈ [0, 1]). Then ∂φ = γ0 + σ − γ1 − σ (so σ is a cut from γ0 to γ1

in the sense of Section 8.7). By Cauchy’s Theorem for a boundary,
²

∂φ

f =

²

γ0

f +

²

σ

f −

²

γ1

f −

²

σ

f = 0

so ²

γ0

f =

²

γ1

f

A closed path γ in D is homotopic to zero or null-homotopic if it is homotopic via
closed paths in D to β : [a, b] → D where β(t) = z0 for all t ∈ [a, b], with z0 ∈ D. We

immediately deduce:

COROLLARY 9.14. Let f be differentiable in a domain D and let γ be a closed path in
D that is homotopic to zero. Then

±
γ f = 0.

The geometric significance of being homotopic to zero is that γ can be continuously
deformed to a single point – more precisely, a path whose image is a single point – as in
Figure 9.18.
We can use a homotopy to prove that the interval of a differentiable complex function

is very well behaved under reparametrisation, of the path of integration. Here we can
work with merely continuous paths and parameter changes. For simplicity we do not
change the parametric interval. It is a useful exercise to include that possibility (intro-
duce an affine map [a,b] → [c, d] and examine how that affects the integral). In the
smooth case it is also possible to use the formula for a change of variable in an integral.

Figure 9.18 A homotopy to zero.
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PROPOSIT ION 9.15. Let f be differentiable on a domain D, and let λ : [a,b] → C be

a path in D. Let ρ : [a,b] → [a, b] be continuous, and let γ = λ ◦ ρ. Then
±
γ f =

±
λ f .

Proof. Define a homotopy σ : [a, b] × [0, 1]→ D by

σ (t, s) = λ((1− s)t + sρ(t))

Clearly σs(t) ∈ D for t ∈ [a, b]. It is easy to check that

σ (t, 0) = γ

σ (t, 1) = λ

Therefore σ is a fixed end point homotopy from γ to λ. Now Theorem 9.10 applies.

9.7 Converse to Cauchy’s Theorem

Starting with Cauchy’s Theorem for a boundary we have deduced first the homotopy-

invariance of the integral for fixed end point or closed path homotopies, and then that
the integral is zero for a path homotopic to zero. However, we can also start with Corol-
lary 9.14 and argue the other way if we wish. First we need a simple result about
changing the parameter of a path:

PROPOSIT ION 9.16. Let γ : [a,b] → D be a path and let ρ : [a,b] → [a,b] be a
continuous map such that ρ(a) = a,ρ(b) = b. Then γ is homotopic to γ ◦ ρ.

Proof. Define φ : [a,b]× [0, 1]→D by

φ(t, s) = γ ((1− s)t + sρ(t))

This is a homotopy, and φ(t, 0) = γ (t),φ(t, 1) = γ (ρ(t)).

Note that the reparametrisation ρ is not required to be a bijection here. Also: all paths
γs have the same image. In effect we are performing a homotopy on the parameter.

We can now prove:

PROPOSIT ION 9.17. A closed path γ in D is a boundary ∂φ, up to reparametrisation,
if and only if γ is homotopic to zero.

Proof. The need to reparametrise the interval on which γ is defined arises because of the
way we have chosen a specific parametrisation for a boundary ∂φ. By Proposition 9.16
we can adjust the parameter provided the images of γ and ∂φ coincide. This reduces the
proof to a geometric argument. We give the essence of the proof in a series of pictures,
leaving the reader the (routine) task of analytic definitions and verifications required to
make it rigorous.
Define a map H : R → R, where R is a rectangle, as in Figure 9.19. The definition

proceeds in stages:

(1) Identify opposite vertical edges to get a cylinder.
(2) Squash the top rim to a point to get a cone.
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Figure 9.19 Topological proof of Proposition 9.17.

(3) Open the cone out flat to get a disc.
(4) Distort the disc to get a square.

Suppose that γ is a boundary, say γ = ∂φ where φ : R→ D. Then φ ◦H : R→ D is

a homotopy. The lower edge of R, marked by the heavy line in the first diagram, maps

to (the image under φ of ) ∂φ. The top edge maps to a point. So γ is homotopic to zero.
Conversely, suppose that γ is a closed path homotopic to zero. Then we can define

a map of the cone into D such that the base circle goes to (the image of ) γ . Therefore
(reversing the last two steps in the definition of H) we can map R into D so that its
perimeter goes to γ . Hence, up to reparametrisation, γ = ∂φ.

9.8 The Cauchy Theorems Compared

A common cause of distress for students of complex analysis is the sudden appearance
of a plague of Cauchy Theorems, having several variant hypotheses and a similar variety
of conclusions, but all begin derivable from each other. At times like this it may be
advisable to seek consolation elsewhere than mathematics: perhaps among the poets.
Rudyard Kipling’s In the Neolithic Age makes the point admirably:

There are nine and sixty way of constructing tribal lays
And – every – single – one – of – them – is – right!

It is much the same with the Cauchy Theorems: all of the different versions are
essentially the same.

At the heart of all Cauchy-type theorems is the local existence of an antiderivative,
Section 8.5. The theorems themselves supply, as hypotheses, conditions that permit this
local result to be globalised in some way.
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For example, in Chapter 8 the local result led to the central Cauchy Theorem 8.8, that
if f is differentiable in D and a closed contour does not wind round any point outside D,
then

±
γ f = 0. This ‘non-winding’ condition ensures that the local pieces of antideriva-

tive fit together well on the global level. The generalised version, with several contours
γ1, . . . ,γn, is a simple corollary obtained by making cuts between the contours.
In this chapter we studied what happens when a contour is deformed continuously.

Again the local existence of an antiderivative is involved: it lets us define the integral of
f along an arbitrary path, and it gives the main result of that chapter, that the integral of
f along a boundary is zero. This is also a globalisation: associated with any boundary is
a map of an entire rectangle, and the local antiderivatives all fit together properly across
the image of this rectangle. Moreover, we saw that a path is a boundary if and only if it
is homotopic to zero. Since homotopy leaves the integral round a closed path invariant,
this makes the reason why

±
γ f = 0 transparent.

We therefore have two main variants of the Cauchy Theorem: one for paths that do
not wind round points outside D, and another for paths that are homotopic to zero. But
(more Kipling), like the Colonel’s Lady and Judy O’Grady, they are ‘sisters under their
skins’. Obviously if γ is homotopic to zero and z0 ±∈ D, then

w(γ , z0) =
1

2π i

²

γ

1

z − z0
dz = 0

because 1/(z − z0) is differentiable in D. So the ‘non-winding’ version of Cauchy’s
Theorem easily implies the ‘homotopy’ version.
It is in fact strictly stronger, in the following sense. The path in Figure 9.20 does not

wind round any z0 ±∈ D, but it is manifestly not homotopic to zero. (However, this is
harder to prove than it might appear.) So the ‘non-winding’ hypothesis is weaker, hence
applies to more cases.
Even this surface difference vanishes when we look a little more deeply, however.

Every path that does not wind round any z0 ±∈ D can be transformed, using a series
of cuts whose contributions to the integral cancel, into a closed path (or set of paths)
homotopic to zero. For example, Figure 9.20 (left) is so transformed in Figure 9.20
(right). This fact is also non-trivial to prove, but it shows that the practical consequences

Figure 9.20 Left: A path that satisfies the non-winding condition but is not homotopic to zero.
Right: Creating cuts in the path makes it homotopic to zero.
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of the extra generality are largely spurious. (The theoretical consequences are more

important: the ‘non-winding’ condition is part of ‘homology theory’, and what we have
here is a relation between homotopy and homology. We postpone a homology version
of Cauchy’s Theorem to Chapter 16, so that we can move on to more practical issues in
Chapters 10–14.)

9.9 Exercises

1. Let D = {z ∈ C : z ±= 0} and Sr(t) = reit (t ∈ [0, 2π]) for r = 1, 2. Define a
continuous map φ : R→ D, where R is a rectangle, such that

²

∂φ

f =
²

S1

f −
²

S2

f

for any f differentiable in D. Use Theorem 9.6 to deduce that
²

S1

f =
²

S2

f

Describe a homotopy via closed paths in D from S1 to S2.

2. Let γ1 ,γ2 be closed paths in a domain D that are homotopic via closed paths in
D. By making a suitable cut σ from γ1 to γ2 , describe a fixed end point homo-

topy in D from γ1 to σ + γ2 − σ . Draw a picture to illustrate the continuous
deformation.

3. Let the boundary ∂φ of a continuous map φ : R → D be subdivided into two
subpaths ∂φ = γ1 + γ2. Describe a fixed end point homotopy in D from γ1 to −γ2 .
Draw a picture to illustrate the continuous deformation.

4. Draw the semicircle γ (t) = eit (t ∈ [−π/2,π/2]) in D = C \ {0}. Define two
explicit polygonal paths λ1, λ2 from −i to i in D such that

²

λ

f =
²

γ

f

is true for all f differentiable in D when λ = λ1, but false when λ = λ2.

5. Let γ : [0, 1] →C be given by γ (0) = γ (1) = 0 and

γ (t) =
´

t+ it sin(π/t) for t ∈ [0, 1
2
]

(1− t) + i(1− t) sin(π/(1− t)) for t ∈ [ 1
2
, 1]

Show that γ is a closed path but not a contour, and draw a sketch.

6. Integrate the following functions around the path γ in Exercise 5:
(i) cos3(z2)

(ii)

∞³

n=1
z
n
/n

(iii) 1/(z− 1
3

√
2)



9.9 Exercises 205

7. Let f be differentiable in D. For a closed path γ in D, beginning and ending at z0 ,
the integral value Iγ is the complex number

Iγ =

²

γ

f

Show that the set of integral values forms a commutative group I( f ,D) under the
operation

Iγ + Iδ = Iγ+δ

Determine the group of integral values in the following cases:
(i) f (z) = 1/z,D = C \ {0}
(ii) f (z) = cos z,D = C \ {0}
(iii) f (z) = 2/(z− 1)+ 3/(z + 1),D = C \ {²1}
(iv) f (z) = 1/(z− 1)+ 2/(z + 1),D = C \ {²1}

8. The Fundamental Group. Let D be a domain and z0 ∈ D. For closed paths γ , δ in D

that begin and end at z0 , define γ ³ δ to mean that γ , δ are fixed end point homo-

topic in D. Show that ³ is an equivalence relation. Let [γ ] denote the equivalence
class containing γ , and let π(D, z0) be the set of equivalence classes.
Define the operation ∗ on π (D, z0) by

[γ ] ∗ [δ] = [γ + δ]

Check that ∗ is well-defined, and show that π (D, z0) is a group under ∗, specifying
the identity element and the inverse of [γ ].
For any other point z1 ∈ D and any path σ in D from z0 to z1 , define g :

π(D, z0) → π(D, z1) by
g([γ ]) = [−σ + γ + σ ]

Show that g is an isomorphism of groups and deduce that π (D, z0) is independent
of the choice of z0 ∈ D. (This result relies on D being path-connected.) For this
reason, the group π (D, z0) is usually denoted by π(D) and called the fundamental

group of D.

9. Describe (without formal proof, since we have not developed suitable techniques)
the fundamental groups of the following domains:

(i) C

(ii) {z ∈ C : |z| < 1}

(iii) {z ∈ C : |1 < z| < 2}

(iv) C \ {0}
(v) C \ {²1}
(vi) C \ Z

10. Let f be differentiable in the domain D, and let γ , δ be closed contours in D begin-

ning and ending at the same point z0 . Show that if γ ³ δ in the sense of Exercise 8,
then the integral values Iγ and Iδ are equal. Prove that the map h : π (D)→ I( f ,D)

for which h([γ ]) = Iγ is a well-defined group homomorphism. Describe the
homomorphism h for each f in Exercise 7.
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11. Integrals Along Arbitrary Paths. For fixed z1, z2 ∈ D, suppose that γ0 is a fixed path
inD, and γ is a variable path inD, both from z1 to z2 . Show that

²

γ

f =

²

γ0

f + Iσ

for some σ ∈ I( f ,D). Prove that if γ is deformed continuously in a homotopy via
closed paths in D, then Iσ remains constant.
For z1 = −i, z2 = i, determine all possible values of

±
γ
f for each f ,D in

Exercise 7.



10 Taylor Series

We now reach a stage in the theory were we can take a great leap forward and show,
as promised repeatedly, that any differentiable complex function has a local power
series representation. On the slim assumption that the derivative of f exists throughout
a domain D, we find that near any point z0 ∈ D there is a power series expansion

f (z0 + h) =

∞±

n=0

anh
n

for z0 + h ∈ Nr(z0)

which is valid – that is, converges – on any disc Nr(z0) ⊆ D, see Figure 10.1.

Figure 10.1 The power series round z0 converges on any disc in D.

This theorem releases a tidal wave of theorems, because we can apply the results of
Chapter 4 on power series to any differentiable function f . For instance, Corollary 4.21
states that a power series can be differentiated term by terms as many times as we like.
Taylor’s Theorem, Corollary 4.22, gives an explicit formula:

f (z0 + h) =

∞±

n=0

f (n)(z0)

n!
hn for z0 + h ∈ Nr(z0) ⊆ D

Thus if we insist only that the first derivative f ± exists in D, it follows that all higher
derivatives exist, and the function is equal to its Taylor series in Nr(z0). We derive subtler
consequences in this and subsequent chapters, and Cauchy’s Theorem plays a prominent

role. It is this sequence of results that gives complex analysis its own special flavour.
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Figure 10.2 Contours in the proof of the Cauchy Integral Formula.

10.1 Cauchy Integral Formula

The proof that any differentiable function can be expressed as a power series depends
on a result of Cauchy, itself of intrinsic interest:

LEMMA 10.1 (Cauchy Integral Formula for a Circle). Let f be differentiable in the disc
NR(z0) = {z ∈ C : |z− z0| < R}. For 0 < r < R, let Cr be the path Cr(t) = z0+ reit (t ∈

[0, 2π]). Then for |w − z0| < r we have

f (w) =
1

2πi

²

Cr

f (z)

z − w
dz

Proof. Fix w such that |w − z0| < r. The function F(z) = ( f (z) − f (w))/(z − w) is
differentiable in the domain

D = {z ∈ C : |z − z0| < R, z ²= w}

Let 0 < ε < r− |w − z0|. Then the circle Sε, centre w, radius ε, is

Sε(t) = z0 + εeit (t ∈ [0, 2π ])

and lies in D, as do all points inside Cr and outside Sε , see Figure 10.2.
By the Generalised Cauchy Theorem, Theorem 8.9,

²

Cr

F(z)dz =

²

Sε

F(z)dz (10.1)

Now limz→w F(z) = f ±(w), so for some δ > 0,M ≥ 0, we have

0 < |z− w| < δ implies |F(z)| ≤ M

The Estimation Lemma, Lemma 6.41, implies that for ε < δ,
³³³³
²

Sε

F(z)dz

³³³³ ≤ M · 2πε
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From (10.1), ³³³³
²

Cr

F(z)dz

³³³³ ≤ 2Mπε

Since ε is arbitrary, this implies that
²

Cr

F(z)dz = 0

Therefore ²

Cr

f (z)

z− w
dz =

²

Cr

f (w)

z− w
dz

= f (w)

²

Cr

1

z− w
dz

= f (w) · 2πi

In other words,

f (w) =
1

2πi

²

Cr

f (z)

z − w
dz

10.2 Taylor Series

Using the Cauchy Integral Formula we can now expand f (z0 +h) as a power series in h,
with coefficients expressed as integrals.

LEMMA 10.2. Let f be differentiable in NR(z0).Then there exist an ∈ C such that

f (z0 + h) =

∞±

n=0

anh
n

where the series converges absolutely for |h| < R. Further, if

Cr(t) = z0 + reit (t ∈ [0, 2π])

then

an =
1

2πi

²

Cr

f (z)

(z − z0)n+1
dz

Proof. Fix h with 0 < |h| < R and initially suppose that r satisfies |h| < r < R,

Figure 10.3.
The Cauchy Integral Formula gives

f (z0 + h) =
1

2π i

²

Cr

f (z)

z− (z0 + h)
dz

=
1

2π i

²

Cr

f (z)

´
1

z− z0
+

h

(z− z0)2
+ · · · + hm

(z − z0)m+1

+
hm+1

(z − z0)
m+1(z− z0 − h)

µ
dz

=

m±

n=0

anh
m + Am
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Figure 10.3 Contour for proof of Lemma 10.2.

where

an =
1

2πi

²

Cr

f (z)

(z − z0)n+1
dz

Am =
1

2πi

²

Cr

f (z)hm+1

(z − z0)
m+1(z − z0 − h)

dz

We demonstrate that limm→∞ Am = 0.

First, since f is differentiable it is continuous, so φ(t) = | f (Cr(t))| is a continuous real
function on [0, 2π ]. From real analysis, φ is bounded, so

|φ(t)| ≤ M for z on Cr

Now |h| < r, |z− z0| = r, and

|z− z0 − h| ≥ ||z− z0| − |h|| = r − |h|

Therefore the Estimation Lemma gives

|Am | ≤
1

2π

M|h|m+1

rm+1(r − |h|)
2πr =

M |h|

r− |h|

¶
|h|

r

·m

Since we chose |h| < r, this tends to zero as m tends to infinity. Thus

lim
m→∞

¸
f (z0 + h)−

m±

n=0

anh
n

¹
= 0

which means that

f (z0 + h) =

∞±

n=0

anh
n

This expansion is valid for |h| < R, and

an =
1

2πi

²

Cr

f (z)

(z − z0)
n+1

dz
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for |h| < r. The latter restriction can now be seen to be unnecessary, for the integral is
differentiable for 0 < |z−z0| < R, so the integral is unchanged if r is varied in the range
0 < r < R.

Once we know that a power series expansion exists, we can use our knowledge of
power series to deduce:

THEOREM 10.3 (Taylor Series). If f is differentiable in a domain D, then all higher
derivatives of f exist throughout D. In any disc NR(z0) ⊆ D the Taylor series expansion

f (z0 + h) =

∞±

n=0

f (n)(z0)

n!
hn (10.2)

is valid. Further, if 0 < r < R and Cr(t) = z0+ reit (t ∈ [0, 2π ]), then

f (n)(z0) =
n!

2π i

²

Cr

f (z)

(z− z0)n+1
dz

Proof. From Lemma 10.2,

f (z0 + h) =

∞±

n=0

anh
n for |h| < R

In other words, putting z = z0+ h,

f (z) =

∞±

n=0

an(z− z0)
n for |z − z0| < R

Now, a power series may be differentiated term by term as often as we please, and by
Corollary 4.22

f
(n)
(z0) = n!an =

n!

2π i

²

Cr

f (z)

(z− z0)
n+1

dz

This gives the desired integral expression for f (n)(z0). Substituting an = ( f (n)(z0))/n! in
the power series gives the Taylor expansion.

Theorem 10.3 was first proved by Cauchy in 1831 by the method above. The series is
named after Brooke Taylor, who in 1715 was the first to publish the idea that a function
can be expanded as a power series of the form

f (x+ h) =

∞±

n=0

f (n)(x)

n!
h
n

Taylor’s theory was restricted to real functions, and it will come as no surprise that the
idea was previously known to others; specifically to James Gregory, who was aware of it
some 45 years earlier, and to Newton in 1691. During the eighteenth century there were
various attempts to base the theory of real analysis on power series, the most famous
being that of Joseph-Louis Lagrange in 1797. Cauchy used power series extensively in
complex analysis. It is a curious quirk of fate that in 1829 he quoted the counterexample
f (x) = e−1/x

2
to show that not every infinitely differentiable real function is equal to
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its Taylor series. Just two years later he went on to show that all differentiable complex
functions have valid power series expansions.
We now introduce some standard terminology, which until now we have avoided.

DEFIN IT ION 10.4. A real function f : D → R, where D ⊆ R, or a complex function
f : D→ C, where D ⊆ C, is analytic if for each α ∈ D it has a power series expansion

f (α + h) =

∞±

N=0

anh
n

valid in some neighbourhood of α.

Cauchy demonstrated that in the real case there are functions that are infinitely dif-
ferentiable but not analytic. But in the complex case he proved that any function that
is differentiable once in a domain must be analytic. At a stroke he showed that in this
respect complex analysis is simpler than real analysis, and reduced the general study of
differentiable complex functions to computations with power series, giving the sequence
of theorems that unfolds in the next few sections.
REMARK 10.5. A complex function on a domain is differentiable if and only if it is ana-
lytic. The two words just emphasise different points of view – existence of a derivative,
existence of a power series expansion – and may be used interchangeably.

10.3 Morera’s Theorem

First we have a partial converse to Cauchy’s Theorem, due to Giacinto Morera in 1889:

THEOREM 10.6 (Morera’s Theorem). If f : D → C is continuous in a domain D andº
γ
f = 0 for all closed contours γ in D, then f is differentiable in D.

Proof. By Theorem 6.44, if
º
γ
f = 0 for all closed contours γ in D, then there exists a

differentiable function F in D whose derivative is f . But now we know that F is twice
(indeed infinitely) differentiable, so f = F± is differentiable.

This theorem explains our warning in Chapter 6 that it is futile to try to find an
antiderivative F for a non-differentiable complex function f . It cannot have one. So there
is a class of functions, including f (z) = |z|, that are continuous but not differentiable.
Such functions are integrable, via the formula

²

γ

f =

² b

a

f (γ (t))γ ±(t)dt

but the Fundamental Theorem of Contour Integration is no use whatsoever in this con-
text, because f has no antiderivative – in stark contrast to the real case, where every
continuous function has an antiderivative. (It can be argued that here real analysis is
simpler than complex.)
To summarise what we know about the existence of derivatives and antiderivatives

for complex functions:
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If f is differentiable in a domain D, then all higher derivatives of f exist. The func-
tion f has an antiderivative only when f is differentiable, and even then, only local

antiderivatives are guaranteed. Specifically, if D1 ⊆ D is simply connected, then f has

an antiderivative in D1, Theorem 8.12. In particular, we can guarantee the existence of
an antiderivative of a differentiable function in any disc contained in its domain.

10.4 Cauchy’s Estimate

Theorem 10.3 includes a generalisation of Cauchy’s Integral Formula to the higher
derivatives of a differentiable function:

f (n)(z0) =
n!

2π i

²

Cr

f (z)

(z− z0)n+1
dz

where NR(z0) ⊆ D and 0 < r < R. With the standard conventions that f (0)(z) = f (z) and
0! = 1, this formula is true for all integers n ≥ 0. Using it, we can give an upper bound
for | f (n)(z0)|:

LEMMA 10.7 (Cauchy’s Estimate). If f : D → C is differentiable for z− z0 < R,

0 < r < R, and | f (z)| ≤ M for |z− z0| < r, then

| f
(n)
(z0)| ≤

Mn!

rn

Proof.

| f
(n)
(z0)| =

³³³³
n!

2πi

²

Cr

f (z)

(z− z0)
n+1

dz

³³³³

≤
n!

2π

M

rn+1
· 2πr

=
Mn!

rn

Cauchy’s Estimate yields an important theorem of Joseph Liouville, which has an
unexpected application to a purely algebraic problem:

THEOREM 10.8 (Liouville’s Theorem). If f is differentiable and bounded in the whole
complex plane, then f is constant.

Proof. Suppose that | f (z)| ≤ M for all z ∈ C. Cauchy’s Estimate applied to the
derivative gives

| f ±(z)| ≤
M

r

Since f is differentiable on C we may let r → ∞, making M/r as small as we please.
Since | f ±(z)| is independent of r, we have

f ±(z) = 0

Thus f ±(z) = 0 throughout C, and (integrating) f is constant.

The application is:
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THEOREM 10.9 (Fundamental Theorem of Algebra). Let P(z) = zn+a1z
n−1+· · ·+an

be a polynomial, where n ≥ 1 and a1, . . . ,an ∈ C. Then there exists w ∈ C with

P(w) = 0.

Proof. For a contradiction, suppose that P(z) ²= 0 for all z ∈ C. Then 1/P(z) is
differentiable throughout C.
Suppose z ²= 0. Then

P(z)

zn
= 1+

a1

z
+ · · · + an

zn
→ 1 as |z| → ∞

So there exists k > 0 such that
³³³³
P(z)

zn

³³³³ ≥
1
2

for |z| > k

Thus ³³³³
1

P(z)

³³³³ ≤
2

|zn|
≤

2

kn
for |z| > k

The same bound works for 1/P(z) throughout C. For if z ≤ k we take a circle CR centre

z0 , radius R, which is so large that |z| > k for all z on CR. Then
³³³³
1

P(z)

³³³³ ≤
2

kn
for all z on CR

and Cauchy’s Estimate gives ³³³³
1

P(z)

³³³³ ≤
2

kn

By Liouville’s Theorem, 1/P(z) is constant, so P(z) is constant. But this contradicts
n ≥ 1. Therefore P(w) = 0 for somew ∈ C.

It follows in the usual way that any polynomial P(z) of degree n, with complex

coefficients, can be expressed as a produce of terms of degree 1:

P(z) = (z − α1)(z − α2) · · · (z− αn)

where the αj ∈ C.

10.5 Zeros

We now broaden our perspective from polynomials, and look at the zeros of arbitrary
differentiable functions.

DEFIN IT ION 10.10. A zero of a differentiable function f : D → C is a point z0 ∈ D

for which f (z0) = 0.

Expanding f in a Taylor series about the zero z0 , we have

f (z) =

∞±

n=0

an(z− z0)
n for |z − z0| < R
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where NR(z0) ⊆ D. Then a0 = f (z0) = 0, and two distinctly different things can occur:
either all of the other am are zero, in which case f (z) = 0 for all z ∈ NR(z0), or there
exists m ≥ 1 such that

a0 = a1 = · · · = am−1 = 0, but am ²= 0 (10.3)

DEFIN IT ION 10.11. If (10.3) holds, then z0 is a zero of order m, or a zero of finite order
if m is unspecified.

The notion of a zero of order m relates directly to that of an infinitesimal of order m
in Chapter 15.
Formula (10.2) for the Taylor coefficients implies that a zero of order m can be

characterised by the condition

f (z0) = f ±(z0) = · · · = f (m−1)(z0) = 0, but f (m)(z0) ²= 0

Another useful expression for such a zero is to write

f (z0) = (z − z0)
mg(z) (|z− z0| < R)

where

g(z) =

∞±

n=0

am+n(z− z0)
n

is differentiable for |z − z0| < R and g(z0) = am ²= 0.

This leads to a fundamentally important idea:

DEFIN IT ION 10.12. A zero z0 of a differentiable function f : D → C is isolated if

some disc centred upon it contains no other zeros of f ; that is, there exists δ > 0 such
that

0 < |z− z0| < δ implies f (z) ²= 0

LEMMA 10.13. A zero of finite order is isolated.

Proof. Write f (z0) = (z − z0)
mg(z) for |z − z0| < R, where g is differentiable and

g(z0) ²= 0. Then g is continuous at z0 , so, taking ε = 1
2|g(z0)| there exists δ > 0 such

that

|z− z0| < δ implies |g(z) − g(z0)| < ε

Therefore, when |z− z0| < δ we have

|g(z)| ≥ ||g(z0)| − |g(z0) − g(z)|| > 2ε − ε = ε

In particular, g(z) ²= 0. But if 0 < |z − z0| < δ then |z − z0|
m ²= 0, so f (z) = (z − z0)

m

g(z) ²= 0.

COROLLARY 10.14. Let S be a set of zeros of a differentiable function f in D, having
a limit point z0 ∈ D. Then f is identically zero in any disc NR(z0) ⊆ D.
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Proof. Because z0 is a limit point of S, there is a sequence {zn}n≥1 in S that tends to z0 .
Then f (z0) = limn→∞ f (zn) = 0. So z0 is a zero of f that is not isolated. Hence it does
not have finite order, so

f (z0 + h) =

∞±

n=0

anhn

in any disc NR(z0) ⊆ D, where all an are zero.

From this we deduce:

PROPOSIT ION 10.15. If f is differentiable in a domain D and S is a set of zeros of f
with a limit point z0 ∈ D, then f is identically zero on D.

Proof. Corollary 10.14 gives f (z) = 0 for z in any disc NR(z0) ⊆ D.

For any other z ∈ D, choose a path γ : [a,b]→ D from z0 to z, Figure 10.4. We show
that f (γ (t)) = 0 for all t ∈ [a,b]. By continuity, we can find δ > 0 such that

a ≤ t < a+ δ implies γ (t) ∈ NR(z0)

so f (γ (t)) = 0 for a ≤ t < a+ δ. Let s be the least upper bound of those x ∈ [a,b] such
that f (γ (x)) = 0 for a≤ t < x. Then a+ δ ≤ s ≤ b.

By continuity, f (γ (s)) = 0. If s < b then γ (s) is a non-isolated zero, so f is identically
zero in a neighbourhood of γ (s). Then there exists an interval [s, s+ κ] with κ > s, on
which f (γ (t)) = 0, contradicting the definition of s. Hence s = b, so f (z) = f (γ (b)) =

0.

An important consequence is:

THEOREM 10.16 (Identity Theorem). If f and g are differentiable in a domain D and
f (z) = g(z) for all z ∈ S ⊆ D where S has a limit point in D, then f = g throughout D.

Proof. Apply Proposition 10.15 to f − g.

Figure 10.4 Proof of Proposition 10.15.
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Example 10.17. It is essential for the relevant limit point of S to be in D: if not, the
theorem can be false. Let

f (z) = sin(1/z)

g(z) = 0

in D = C \ {0}. Then f (z) = g(z) for z = ³1/(nπ ) and z0 = 0 is a limit point of
S = {³1/(nπ )}, but f ²= g inD.

10.6 Extension Functions

Combining the Identity Theorem with power series leads to a method that can often
extend the domain of definition of a complex differentiable function.

DEFIN IT ION 10.18. A function f : D → C is an extension function of h : S → C if

S ⊆ D and f (z) = h(z) for all z ∈ S. (We also say that f extends h.)

Example 10.19. f (z) = 1/(1 − z) on D = C \ {1} is an extension function of h(z) =
∑∞

n=0 z
n on S = {z ∈ C : |z| < 1}.

Suppose that D is a domain and S ⊆ D has a limit point in D. The Identity Theorem
shows that if a function f : S → C has a differentiable extension function g : D ⊆ C,

then the extension is unique.
As an application, suppose that f : D → C is differentiable and consider the Taylor

expansion f (z) =
∑∞

n=0 an(z − z0)
n of f in a disc Nr(z0) ⊆ D. Then f is the only

possible extension of the Taylor expansion to the whole of D. This means that although
the Taylor expansion may not converge on the whole of D, it contains all the information

needed to determine f uniquely throughout D. We use this fact to great advantage in
Chapter 14.

Example 10.20. Consider the power series

z−
z2

2
+ · · · + (−1)

n z
n

n
+ · · · (10.4)

on the small disc S = {z ∈ C : |z| < 1/1 000 000}. We can certainly extend this function
to a larger disc, because the radius of convergence of the power series is 1. However,
we can extend beyond this. For instance, if K = {t ∈ R : t ≤ −1} and D = C \ K,

then f (z) = log(1 + z) is the (unique) differentiable extension of the power series to D,

Figure 10.5.
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Figure 10.5 Extending the power series (10.4) toC \ K.

The set S need not be a domain. In particular, it may be a subset of R:

Example 10.21. f (z) = sin z for z ∈ C is the unique differentiable extension function of
f (x) = sin x for x ∈ R. This is a consequence of the usual convergent Taylor expansion
in the real case.

Of course, if D is a domain then it is open, so D ∩ R is open in R. A differentiable
function f : D→ C has a power series expansion in a neighbourhood of any x0 ∈ D∩R.

So if a real function h : S → R extends to a differentiable complex function on a
domain, it must already have a power series expansion about any point in S ⊆ D ∩ R.

Thus the only real functions that extend to differentiable complex functions are real
analytic functions.

We may take S to be even more restricted, provided that it has at least one limit point
in D:

Example 10.22. If f (1/n) = 1/n2 for all positive integers n, then f (z) = z2 is the unique
analytic extension of f to the whole complex plane, because

S = {1/n : n is a positive integer}

has the limit point 0 ∈ C.

The Taylor expansion is valid on discs (Theorem 10.3), and may therefore be used to
define extension functions. It is therefore easy to see that the radius of convergence of
the Taylor expansion of a function f about a point z0 is equal to the distance from z0 to

the nearest point z1 at which no differentiable extension function of f may be defined.
Such a point is called a singularity of f , see Chapter 11. Singularities are obstacles that
determine the radius of convergence of a Taylor series.
(There is no relation between this use of ‘singularity’ and the term ‘singu-

lar’ in Definition 6.20. ‘Singular’ is just one of those words that get overused in
mathematics.)
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10.7 Local Maxima and Minima

The complex numbers are not ordered, so we cannot speak of maxima and minima of a
complex function f . We can, however, consider maximum and minimum values of the
modulus | f |, since this is real.

DEFIN IT ION 10.23. If f : D → C, then

(i) The modulus | f | has a local maximum at z0 ∈ D if there exists ε > 0 such that
N
ε
(z0) ⊆ D and | f (z)| ≤ | f (z0)| for all z ∈ N

ε
(z0). The local maximum is strict if

| f (z)| < | f (z0)| for all z ∈ Nε (z0) \ {z0}.
(ii) The modulus | f | has a local minimum at z0 ∈ D if there exists ε > 0 such that

Nε(z0) ⊆ D and | f (z)| ≥ | f (z0)| for all z ∈ Nε(z0). The local minimum is strict if
| f (z)| > | f (z0)| for all z ∈ N

ε
(z0) \ {z0}.

The problem of finding local maxima of | f | in a domain turns out to be easy (or
impossible, depending on how you look at it, since there are none.)

PROPOSIT ION 10.24. A differentiable function has no strict local maximum of its
modulus in its domain. If it has a local maximum in its domain, it is constant.

Proof. Suppose that f is differentiable in D and let z0 be a local maximum in D. Then
| f (z)| ≤ | f (z0)| for all z ∈ Nε (z0). For 0 < r < ε, the circleCr(t) = z0+re

it (t ∈ [0, 2π ])
lies inside Nε(z0), so | f (z0 + reit)| ≤ | f (z0)| for all t ∈ [0, 2π ]. The Cauchy Integral
formula gives

f (z0) =
1

2π i

²

Cr

f (z)

z− z0
dz

=
1

2π i

² 2π

0

f (z0 + reit )

reit
ireitdt

=
1

2π i

² 2π

0

f (z0 + reit)dt

so that

| f (z0)| ≤
1

2π

² 2π

0

| f (z0 + reit)|dt ≤
1

2π

² 2π

0

| f (z0)|dt ≤ | f (z0)|

Hence

| f (z0)| =
1

2π

² 2π

0

| f (z0 + reit)|dt (10.5)

If the strict inequality | f (z0 + reit)| < | f (z0)| were to hold for any t ∈ [0, 2π ], then by
continuity it would also hold in a small interval, giving the strict inequality

1

2π

² 2π

0

| f (z0+ reit)|dt < | f (z0)|

contradicting (10.5).
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Hence | f (z0 + reit)| = | f (z0)| for all t ∈ [0, 2π]. This holds for any r < ε , so | f | is
constant in Nε(z0). By Proposition 4.15, f is constant in Nε(z0). The Identity Theorem
now shows that f is constant throughout D.

For the complementary notion of a local minimum of | f |, it is clear that if f is non-
constant and has a zero at z0 then z0 is isolated and | f | has a strict local minimum

there. If f is non-zero on D, observe that | f | has a strict local minimum if and only if
|1/f | = 1/| f | has a strict local maximum. We can apply Proposition 10.24 to 1/f to get:

PROPOSIT ION 10.25. A differentiable function that does not equal zero anywhere in
its domain has no strict local minimum of its modulus in its domain. If it has a local
minimum in its domain, it is constant.

10.8 The Maximum Modulus Theorem

The question of maxima or minima of | f | on an arbitrary subset of the domain of f is
somewhat different.

DEFIN IT ION 10.26. Let f : D → C be differentiable in a domain D, and let S ⊆ D.

Then | f | has a local maximum on S at z0 ∈ S if

(i) z0 is a limit point of S.
(ii) For some ε > 0, | f (z)| < | f (z0)| whenever z ∈ Nε (z0) ∩ S.

Condition (i) is essential, for otherwise some neighbourhood Nε(z0) contains no
points of S other than z0 , and then condition (ii) is vacuously true.

Example 10.27. If f (z) = ez and S = {z ∈ C : |z| ≤ 1}, then | f (x+ iy)| = ex and | f | has

a local maximum on S at the point z0 = 1.

Using Proposition 10.24, we see that if Nε (z0) ⊆ S, then | f | cannot have a strict local
maximum at z0 . To explore this further, we need:

DEFIN IT ION 10.28. A point z0 is a boundary point of S if every neighbourhood of z0
contains a point in S and a point not in S, other than z0 itself. In other words, a boundary
point is a limit point both of S and its complement C \ S.

The boundary ∂S of S is its set of boundary points.

Example 10.29. The boundary of S = {z ∈ C : |z| ≤ 1} and of of its complement

{z ∈ C : |z| > 1} is the circle {z ∈ C : |z| = 1}.

We can now rephrase Proposition 10.24 to give:
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THEOREM 10.30 (Maximum Modulus Theorem). If a differentiable function is not
constant, then any local maximum value of its modulus on an arbitrary subset of its
domain occurs on the boundary of that set.

We also have from Proposition 10.25:

THEOREM 10.31 (Minimum Modulus Theorem). If a differentiable function is not con-
stant, then any local minimum value of its modulus on an arbitrary subset of its domain
occurs either at a zero of the function, or on the boundary of that set.

Example 10.32. If f (z) = z2 on the set S = {z ∈ C : |z| ≤ 1}, then the maximum values
of | f (x + iy)| = x2 + y2 occur all round the boundary of S, while the minimum value
occurs at the origin.

10.9 Exercises

1. Find the Taylor series at 0 of f (z) = Log(1 + z), where Log is the principal
value. What is the disc of convergence? Answer the same questions for g(z) =
exp(αLog(1 + z)), where α ∈ C.

2. Find the first three terms and radius of convergence for the Taylor series at 0 of
F(z) = [1+ Log (1− z)]−1.

3. Taylor expand the following functions around 0, and find the radius of convergence.
(i) sin2 z
(ii) z2(z+ 2)−2

(iii) (az+ b)−1 (a, b ∈ C, b ²= 0)

(iv)
º z

0
exp(w2)dw

(v)

´
(sin z)/z (z ²= 0)

1 (z = 0)

(vi)
º z

0
(sinw)/w dw

4. Define the numbers cn by the Taylor series

sec z =

∞±

n=0

(−1)n
c2n

(2n)!
z2n

Prove that

c0 = 1

0 = c0 + c2

¶
2n

2

·
+ c4

¶
2n

4

·
+ · · · + c2n

¶
2n

2n

·

Show that c2n is always an integer and calculate it for n ≤ 5.

5. Let
(1− z− z2)−1 =

±
Fnz

n
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Prove that
F0 = F1 = 1 Fn = Fn−1 + Fn−2 (n ≥ 2)

This is the recursive definition of the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, . . ..
By expanding (1 − z− z2)−1 in partial fractions, prove that

Fn =
1
√
5

⎡

⎣
¸
1+

√
5

2

¹n+1
−
¸
1−

√
5

2

¹n+1⎤

⎦

6. Investigate analogous results to Exercise 5 on the expansion of (1 − az− bz2)−1 ,
for a,b ∈ C.

7. If

exp

¶
z

1− z

·
=
±

anz
n

prove that

a0 = 1 an =
n±

s=1

1

s!

¶
n− 1
s− 1

·

8. Let f (z) have Taylor series
∑

anz
n for |z| < R. Let ω = e2π i/3 and define

g(z) = 1
3 ( f (z)+ f (ωz) + f (ω2z))

Show that
g(z) =

±
a3nz

3n

for |z| < R. Find similar expressions for
∑

a3n+1z3n+1 and
∑

a3n+2z3n+2 . (Hint:
1+ ω + ω2 = 0.)

9. Define three functions by

α(z) =
± z3n

(3n)!
β(z) =

± z3n+2

(3n+ 2)!
γ (z) =

± z3n+1

(3n+ 1)!
Prove the series converge for all z. Using Exercise 8, prove the following:
(i) α±(z) = β(z) β±(z) = γ (z) γ ±(x) = α(z)

(ii) α(z) = 1
3[e

z + 2e−z/2 cos(z
√
3/2)]; find similar expressions for β(z), γ (z).

(iii) α(z + w) = α(z)α(w) + β(z)γ (w) + γ (z)β(w)

(iv) α3(z)+ β3(z)+ γ 3(z) = 1

(v) α(z) = β(z) ⇐⇒ z = (3n− 1) · 2π
3
√
3
(n ∈ Z)

10. Generalise Exercise 8 to find an expression for
∑

apnz
pn (p = 2, 3, . . .), and (harder)

for
∑

apn+kzpn+k (p = 2, 3, . . . ;k = 0, 1, . . . ,p− 1).
11. Show that the Cauchy estimate is an equality if and only if f (z) = Kzn for some

K ∈ C, n = 1, 2, 3, . . ..
12. Let D be a disc centre z0 , and let f be differentiable in a domain containing D.

Prove that the ‘mean value’ of f (z) as z runs over ∂D (defined by a suitable integral)
is equal to f (z0).
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13. Let f be differentiable throughout C, and suppose that | f (z)| ≤ K|z|c for a real
constant K and positive integer c. Prove that f is a polynomial function of degree
≤ c.

14. Let f and g be differentiable on the strip D = {z ∈ C : −2 < im z < 2}. Suppose
that f (z) = g(z) for all z such that |z| < 0.01. By considering Taylor expansions first
about 0, then 1, and so on by induction, prove that f (z) = g(z) on D.

15. Suppose that f (z) =
∑

an(z − z0)
n in a disc D centre z0, radius R. If 0 ≤ r < R,

show that
1

2π

² 2

0

| f (z0 + reiθ )|2dθ =
±

|an|
2r2n

(Parseval’s Inequality). Hence show that
±

|an|
2r2n ≤M(r) = sup

θ

| f (z0 + reiθ )|

Use this to give an alternative proof of the Maximum Modulus Theorem.

16. If p(z) is a polynomial of degree n, show that for each R > 0 the ‘level curve’ of
|p(z)|, defined to be {z ∈ C : |p(z)| = R}, has at most n connected components.

17. Suppose that x2+ y2 ≤ a2 . Prove that (1+x)2+ y2 attains its maximum value when
x = a, y = 0. (Hint: apply the Maximum Modulus Theorem to 1 + z on the disc
|z| = a.)

18. Suppose that x2 + y2 ≤ 1. Prove that (x2 − y2 − 1)2 + 4x2y2 attains its maximum

value when x = 0, y = ³1.
19. If f is differentiable in a domain D, prove that the zeros of f are either all of finite

order and isolated, or f is identically zero on D.

20. Let

f (x) =

²
∞

x

t−1ex−tdt

where x is real and positive. By repeated integration by parts, show that if

hn(x) = (−1)nn!x−(n+1)

then

f (x) = h0(x)+ h1(x)+ · · · + hn−1(x) + (−1)n
² ∞

x

ext−(n+1)dt

Show that the series
∞±

n=0

hn(x) (10.6)

diverges for all x. Show also that
³³³³³ f (x)−

N±

n=o

hn(x)

³³³³³ < N!x−(N+1)
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so that for large enough x the series (10.6) provides an arbitrarily good approxima-

tion to f (x), even though it diverges.
(The catch is that, the better the approximation required, the larger x has to be.

No particular choice of x gives an arbitrarily good approximation if we take N large

enough. A series with this property is called an asymptotic series.)
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The Taylor series expansion is too limited for many applications. A useful generalisation
was given by Laurent in 1843. Weierstrass may have discovered it two years earlier, but
his paper was not published until after his death. Laurent considered ‘power series’
involving negative powers as well as positive. The benefits that accrue are hinted at by
the following example. The function f (z) = e−1/z

2
is very badly behaved as regards

Taylor series expansion. We have seen that, restricted to the real line, its Taylor series
about the origin is 0+0x+ 0x2+ · · · , which does not converge to f (x). On the complex

plane it is, if such a statement makes sense, even less capable of being represented by
a Taylor series. The natural series representation is obtained by starting with the Taylor
series for ez and replacing z by −1/z2, giving

f (z) = 1− z
−2
+

1

2!
z
−4
+

1

3!
z
−6
+ · · ·

and this is a series of the ‘negative powers’ type. It converges for all z for which −1/z2
is defined, namely z ±= 0.

11.1 Series Involving Negative Powers

The general series of this type can be written in the form
∞±

n=−∞

an(z − z0)
n

which is to be thought of as a compact notation for
²
∞±

n=0

an(z − z0)
n

³
+

²
∞±

n=1

a−n(z− z0)
−n

³

and hence converges if and only if the two series in parentheses converge. We know that
power series converge inside a disc. Consequently power series with negative powers
alone should converge outside a disc. For instance, that for e−1/z2 converges outside the
disc |z| = 0. Therefore those with both positive and negative powers should converge in
a region between two concentric circles. Recall that such a region is called an annulus.
More precisely, if R1, R2 ∈ Rwith 0 ≤ R1 < R2 ≤ ∞, and z0 ∈ C, then

{z ∈ C : R1 ≤ |z − z0| ≤ R2}
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is an annulus.
We begin with an existence theorem for series expansions of the above kind.

THEOREM 11.1 (Laurent’s Theorem). If f is differentiable in the annulus R1 ≤ |z −
z0| ≤ R2 where 0 ≤ R1 < R2 ≤ ∞, then

f (z0 + h) =

∞±

n=0

anh
n
+

∞±

n=1

bnh
−n

where
∑

anh
n converges for |h| < R2 ,

∑
bnh

−n converges for |h| > R1 , and in
particular both sides converge in the interior of the annulus.
Further, if Cr(t) = z0 + reit, (t ∈ [0, 2π ]) then

an =
1

2π i

´

Cr

f (z)

(z− z0)
n+1

dz

bn =
1

2π i

´

Cr

f (z)(z− z0)
n−1dz

Before giving the proof:
REMARK 11.2. In the more compact notation we set cn = an (n ≥ 0) and c−n = bn

(n ≥ 1). Then

f (z0 + h) =

∞±

n=−∞

cnh
n

which converges in the interior of the annulus, and

cn =
1

2π i

´

Cr

f (z)

(z− z0)
n+1

dz

for all n ∈ Z.

Proof of Theorem 11.1. If R1 < |h| < R2 , choose r1 , r2 such that

R1 < r1 < |h| < r2 < R2

and let

Cr1 (t) = z0 + r1e
it (t ∈ [0, 2π])

Cr2 (t) = z0 + r2e
it (t ∈ [0, 2π])

as in Figure 11.1.
We show first that

f (z0 + h) =
1

2π i

´

Cr1

f (z)

(z− (z0 + h))
dz−

1

2π i

´

Cr2

f (z)

(z− (z0 + h))
dz (11.1)

To do so, enclose z0 + h in a small circle

Sε(t) = z0 + εe
it (t ∈ [0, 2π ])

Then the function

F(z) =
f (z)

z − (z0 + h)
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Figure 11.1 An annulus, showing paths used to prove Theorem 11.1.

is differentiable in

S= {z ∈ C : R1 < |z − z0| < R2 , z ±= z0 + h}

and the contours −Cr2 , Cr1 , Sε satisfy the hypotheses of Theorem 8.9. Therefore
´

−Cr2

F(z)dz+

´

Cr1

F(z)dz+

´

Sε

F(z)dz = 0

Hence
´

Sε

F(z)dz =

´

Cr2

F(z)dz−

´

Cr1

F(z)dz

But by Cauchy’s Integral Formula,

´

Sε

F(z)dz = 2π i · f (z0 + h)

giving (11.1).
(Alternatively we can make cuts and integrate round the two halves, as shown in

Figure 11.2. The parts of the contours along the cuts cancel in pairs when integrated.)
All we need do now is work out the two integrals in (11.1) as power series, and

calculate the coefficients. Unfortunately this is the longer part of the proof, although the
calculations are routine.
First, we choose ρ1, ρ2 with

r1 < ρ1 < |h| < ρ2 < r2

which enforces the conditions:

(i) |z− (z0 + h)| > r2 − ρ2 for z on Cr2 ; and
(ii) |z− (z0 + h)| > ρ1 − r1 for z on Cr1 .
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Figure 11.2 Alternative proof using cuts.

As in the proof of the Taylor series expansion, Lemma 10.2, we get

1

2π i

´

Cr1

f (z)

z− (z0 + h)
dz =

∞±

n=0

anh
n

for |h| < ρ2, where

an =
1

2π i

´

Cr1

f (z)

(z− z0)
n+1

dz

The treatment of the second integral is similar, but will be given in full. Since

1

h
+

z− z0

h2
+ · · · +

(z− z0)
n−1

hn
−

(z− z0)
n

hn(z− z0 − h)
=

−1

z− z0 − h

(summing a geometric series) we have

−
1

2πi

´

Cr2

f (z)

(z − z0 − h)
dz =

1

2π i

´

Cr2

f (z)

µ
1

h
+ · · · + (z − z0)

n−1

hn
−

(z− z0)
n

hn(z− z0 − h)

¶
dz

=

n±

m=1

bmh
−m
− Bn

where

bm =
1

2πi

´

Cr2

f (z)(z− z0)
m−1dz

Bn =
1

2πi

´

Cr2

f (z)(z− z0)
n

hn(z− z0 − h)

Finally we estimate the size of Bn . There exists M > 0 such that | f (z)| ≤ M on Cr1

since this circle is closed and bounded. By (i) above, |z − z0 − h| > ρ1 − r1 . Also
|h| > ρ1 , |z − z0| = r1. Hence

|Bn| ≤
1

2π

Mrn1

ρ
n
1(ρ1 − r1)

· 2π r1 =
Mr1

ρ1 − r1

·
r1

ρ1

¸n
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which tends to 0 as b= n→ ∞, since r1/ρ1 < 1. It follows that

−
1

2π i

´

Cr2

f (z)

(z− z0 − h)
dz =

∞±

m=1

bmh
−m

To finish the proof we must replace Cr1 and Cr2 by Cr in the expressions for an and

bn. Since all three paths are homotopic inside the annulus, or by using cuts, this is
immediate.

Note that we can no longer assert that an = f (n)(z0)/n! since f (z) need not be
differentiable for |z− z0| < R1 under the stated hypotheses.

DEFIN IT ION 11.3. The Laurent series or Laurent expansion of f (z) about z0 is the
series

∞±

n=−∞

cnh
n

where h = z− z0 and cn is defined above.

THEOREM 11.4. The Laurent expansion of f about z0 is unique.

Proof. Suppose that

f (z) =

∞±

n=−∞

dn(z− z0)
n

Then

(z − z0)
−m−1

f (z) =

∞±

n=−∞

dn(z− z0)
n−m−1

= f1(z)+
dm

z− z0
+ f2(z)

where

f1(z) =

m−1±

n=−∞

dn(z− z0)
n−m−1

f2(z) =

∞±

n=m+1

dn(z− z0)
n−m−1

But each of f1 , f2 has an antiderivative in R1 < |z− z0| < R2 , because we can integrate
term by term. That is, set

F1(z) =

m−1±

n=−∞

1

m− n
dn(z− z0)

n−m

F2(z) =

∞±

n=m+1

1

m− n
dn(z − z0)

n−m

It is easy to check that the series converge absolutely for R1 < |z − z0| < R2 and that
F²1(z) = f1(z), F

²
2(z) = f2(z). Hence
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´

Cr

f (z)(z − z0)
−m−1dz =

´

Cr

dm

z− z0
dz = 2π idm

so dm = cm as defined above.

Example 11.5. Let f (z) = ez+ e1/z. We know that

ez =

∞±

n=0

1

n!
zn for all z

e1/z =

∞±

n=0

1

n!
z−n for all z ±= 0

so

f (z) =

∞±

m=∞

cmz
m

where

cm = 1/m! (m ≥ 1)

c0 = 2

cm = 1/(−m)! (m ≤ −1)

and the expansion is valid for z ±= 0.

Example 11.6. f (z) = 1

z
+

1

1− z
. In a similar way, f (z) =

∑
cmz

m where

cm =0 (m < −1)

cm =1 (m ≥ −1)

Example 11.7. f (z) = 1

z− 1
−

1

z − 2
. Writing this as

1

z(1− 1/z)
+

1

2(1 − z/2)

we obtain an expansion f (z) =
∑

cmz
m where

cm = 1 (m < −1)

cm = 2−(m+1) (m ≥ 0)

valid in the annulus 1 < |z| < 2.

11.2 Isolated Singularities

If f is differentiable in a punctured disc

0 < |z− z0| < R where R > 0
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we say that z0 is an isolated singularity of f . We can use the Laurent expansion to study
such singularities. There is a Laurent series

f (z) =

∞±

n=0

an(z− z0)
n
+

∞±

n=1

bn(z − z0)
−n

valid for 0 < |z− z0| < R. This series can behave in three radically different ways:
(1) All bn = 0. If we define f (z0) = a0 we obtain a function that is differentiable on

the whole disc |z − z0| < R, with Taylor series

∞±

n=0

an(z − z0)
n

In this case z0 is said to be a removable singularity. It arises from our choice of a domain

of definition of f , rather than from any intrinsic feature of f .
For example, consider

f (z) =
sin z

z
(z ±= 0)

Around z0 = 0 we have

f (z) = 1−
z2

3!
+

z4

5!
− · · ·

so by defining f (0) = 1 we get a function differentiable for all z ∈ D.

(2) Only finitely many bn ±= 0. Then

f (z) =
bm

(z− z0)
m
+ · · · +

b1

z− z0
+

∞±

n=0

an(z− z0)
n

where bm ±= 0. In this case we say that f has a pole of order m at z0.

For example

f (z) = z−4 sin z (z ±= 0)

=
1

z3
−

1

3!z
+

∞±

n=0

(−1)
n z2n+1

(2n+ 5)!

has a pole of order 3 at z0 = 0.

(2) Infinitely many bn ±= 0. Then we say that z0 is an isolated essential singularity.
For example

f (z) = sin(1/z) (z ±= 0)

=
1

z
−

1

3!z3
+

1

5!z5
− · · ·

has an isolated essential singularity at z0 = 0.

We investigate the behaviour of a differentiable function near an isolated singularity,
according to these three possibilities.
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11.3 Behaviour Near an Isolated Singularity

Removable singularities are trivial and uninteresting – which make it all the more

important to recognise them. The next lemma is usually sufficient for this purpose.

LEMMA 11.8. The following are equivalent for a function f that is differentiable for
0 < |z − z0| < R:

(i) z0 is a removable singularity of f .
(ii) limz→z0 f (z) exists and is finite.
(iii) There exist M > 0, δ > 0 such that | f (z)| < M for 0 < |z− z0| < δ.

Proof. Trivially (i)⇒ (ii)⇒ (iii), so we need prove only that (iii)⇒ (i).

Suppose (iii) holds, and take a Laurent expansion

f (z) =

∞±

n=0

an(z− z0)
n +

∞±

n=1

bn(z − z0)
−n

Now

bn =
1

2π i

´

Cr

f (z)(z− z0)
n−1dz

where Cr(t) = z0 + reit (t ∈ [0, 2π ]) and 0 < r < R. So

|bn| ≤
1

2π
Mrn−1 · 2π r = Mrn

if we let r → 0 it follows that |bn| = 0 for all n ≥ 1. Thus z0 is a removable singularity
and (i) holds.

We immediately deduce the useful:

COROLLARY 11.9. If any coefficient bn ±= 0 (n ≥ 1) then f is unbounded on every
open disc with centre z0 .

For example, if

f (z) =
z2

(ez− 1) sin z
(z ±= 0)

then

lim
z→0

f (z) = lim
z→0

·
z

ez − 1

¸ ·
z

sin z

¸

= lim
z→0

¹
1+

z

2!
+ · · ·

º−1 ·
1−

z2

3!
+ · · ·

¸−1

= 1

so z0 = 0 is a removable singularity.
There is a similar, slightly more complicated, criterion for poles.
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PROPOSIT ION 11.10. If f is differentiable for 0 < |z − z0| < R, then f has a pole of
order m at z0 if and only if

lim
z→0

(z− z0)
mf (z) = l ±= 0

Proof. If f has a pole of order m then

(z− z0)
mf (z) = bm + · · · + b1(z− z0)

m−1 +

∞±

n=0

an(z− z0)
n

so that
lim
z→0

(z − z0)
m f (z) = bm ±= 0

Conversely, if the limit is l ±= 0, then g(z) = (z − z0)
mf (z) has a removable singularity

at z0 by Lemma 11.8, so there is a series

g(z) =

∞±

n=0

an(z − z0)
n

valid for |z− z0| < R, and a0 = l ±= 0. But now

f (z) =
a0

(z − z0)m
+ · · · +

am−1

z − z0
+

∞±

n=0

an+m(z− z0)
n

where a0 ±= 0, so f has a pole of order m at z0.

For example, consider

f (z) =
5z+ 3

(1− z)3 sin2 z
(0< |z| < 1)

Then limz→0 z
2f (z) = 3 ±= 0, so there is a double pole (pole of order 2) at the origin.

Also, limz→1(z − 1)3f (z) = −8/ sin2(1) ±= 0, so there is a triple pole (pole of order 3)
at z0 = 1.

COROLLARY 11.11. The function f (z) has a pole of order m at z0 if and only if 1/f (z)
has a removable singularity at z0 which, if removed, gives rise to a zero of order m at
z0 . This in particular occurs when 1/f (z) has a zero of order m at z0 .

Proof. If f (z) has a pole of order m at z0 then g(z) = (z − z0)
mf (z) has a removable

singularity at z0. Further, these exists δ > 0 such that g(z) ±= 0 for |z− z0| < δ. So

1/f (z) = (z − z0)
m/g(z)

and 1/g(z) is differentiable for |z − z0| < δ . Therefore, with the singularity removed,

1/f (z) has a zero of order m at z0.

The converse is proved by an almost identical argument.

COROLLARY 11.12. If f (z) has a pole of order m at z0 , then

lim
z→z0

| f (z)| = +∞
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Proof.

lim
z→z0

| f (z)| = lim
z→z0

|g(z)/(z− z0)
m|

= |l| · lim
z→z0

|z− z0|
−m

= + ∞

Thus near a pole the behaviour of f is really quite good. However, near an isolated
essential singularity the behaviour is much wilder. The following result is classical:

THEOREM 11.13 (Weierstrass–Casorati Theorem). In every neighbourhood of an iso-
lated essential singularity z0 a differentiable function f takes values arbitrarily close to
any assigned complex number. Specifically, given r > 0, ε > 0, and w ∈ C there exists
z1 such that |z1 − z0| < R and | f (z1)− w| < ε.

Proof. We have

f (z) =
∞±

n=0

an(z− z0)
n
+

∞±

n=1

bn(z − z0)
−n

with infinitely many bn ±= 0. If we define φ(z) = f (z) − w then the Laurent series of
φ(z) differs from that of f (z) only in the coefficient a0 , which becomes a0 − w. Hence
φ(z) also has an isolated essential singularity at z0, so we need prove only that φ(z) can
be made arbitrarily small in any neighbourhood of z0 . That is, there exists z1 with

0 < |z1 − z0| < r |φ(z1)| < ε

If z0 is a limit of zeros of φ this is trivial. Failing this, there exists ρ > 0 such that
φ(z) ±= 0 for 0 < |z1 − z0| < ρ. Either there exists z1 with 0 < |z1 − z0| < r and
1/φ(z1) > 1/ε, or else 1/φ(z) is bounded for 0 < |z1 − z0| < r. If the former, then
the theorem is proved. If the latter, then 1/φ(z) has a removable singularity at z0 by
Lemma 11.8, so by Corollary 11.11 φ(z) has at worst a pole at z0 , which contradicts z0
being essential. Thus the latter case cannot occur.

In point of fact, a stronger and more satisfying result is true. Émile Picard (1856–
1941) proved that in every neighbourhood of an isolated essential singularity, a
differentiable function f takes every value, with at most one exception. For instance,
sin(1/z) takes every value in 0 < |z| < r for any r > 0, as can easily be verified. The
exception can occur: e1/z misses out the value 0 but attains all others in 0 < |z| < r

for any r > 0. But the proof of Picard’s Theorem requires machinery (elliptic modular
functions) considerably beyond the reach of this text.

11.4 The Extended Complex Plane, or Riemann Sphere

In real analysis it is standard to extend the real line R by adjoining two points at infin-
ity, +∞ and −∞. We then have a simple way to discuss and visualise limits such as
limx→+∞ 1/x and limx→−∞ ex.
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Sometimes it is more helpful to consider these two points to be identical. For example,

the graph of y = 1/x is a hyperbola, which heads off to ³∞ along both axes. If we
identify +∞ with −∞ (known as the one-point-compactification of R) the extended
hyperbola closes up to form a closed curve, like an ellipse. Both of these curves are conic
sections, and in projective geometry they are projectively equivalent. So the projective
line extends R by adjoining a single point at infinity.
There is a similar extension of the complex plane, which lets us describe the behaviour

of a complex function ‘at infinity’ by adjoining to C a single extra point ‘∞’. We adjoin
just one point in the complex case because the distinction between the two ends of the
real line becomes blurred when we deal with the whole plane. For instance, if we rotate
C continuously through π, +∞ and −∞ in R swap places. The method for adjoining
this extra point was introduced by Bernhard Riemann, and has an elegant geometric

realisation.

Think of C as being embedded in the (x, y)-plane in R3 , so that a point x+ iy ∈ C is

identified with (x, y, 0) ∈ R3 . Let

S2 = {(ξ ,η, ζ) ∈ R3 : ξ 2+ η2 + ζ 2 = 1}

be the unit sphere. A line joining the North pole (0, 0, 1) to (x, y, 0) cuts S2 in a unique
point (ξ ,η, ζ), giving a one-to-one correspondence between C and all points on S2

except the North pole, Figure 11.3.
It is easy to verify that

(ξ ,η, ζ ) corresponds to
·

ξ

1− ζ

¸
+ i

·
η

1− ζ

¸

As (ξ ,η, ζ) gets near to (0, 0, 1) it follows (as is obvious geometrically) that |x + iy|

becomes very large. Thus it is reasonable to introduce the symbol

∞

Figure 11.3 The Riemann sphere.
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Figure 11.4 Neighbourhood of∞ on the Riemann sphere.

to correspond to (0, 0, 1) ∈ S2 . Thus we have a one-to-one correspondence between S2

and C∪ {∞}. We call the latter the extended complex plane. It may be identified with
S2, which is then known as the Riemann sphere.
We can now think of C ∪ {∞} either as a plane plus an extra point, or as a sphere.

Correspondingly, we think of C as a plane, or as a sphere without a North pole. Both
viewpoints are valuable, depending on the problem at hand.
Since {x + iy : |x + iy| > R} corresponds to a ‘spherical cap’ between a line of

latitude and the North pole (Figure 11.4) it makes sense to think of {z ∈ C : |z| > R} as

a ‘neighbourhood of∞’. Such neighbourhoods get smaller as R gets bigger. So doing
this leads to a concept of continuity on S2, agreeing with geometric intuition (and the
standard distance function on R3). Readers familiar with topology can render this in
more precise terms: we obtain a topology on the Riemann sphere that is identical to its
usual topology as a subset of R3 .

11.5 Behaviour of a Differentiable Function at Infinity

Suppose that f (z) is differentiable in {z ∈ C : |z| > R}. Then we can define

g(z) = f (1/z) (0< |z| < 1/R)

Since g²(z) = −z−2f ²(1/z) it follows that g(z) is differentiable for 0 < |z| < 1/R, and
therefore has an isolated singularity at 0.

DEFIN IT ION 11.14. The function f has a removable singularity, pole of order m, or
isolated essential singularity at ∞ if and only if g(z) = f (1/z) has the corresponding
type of singularity at 0.
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Example 11.15. f (z) = 1/z (|z| > 0). Then g(z) = z (|z| > 0), so f has a removable

singularity at∞.

Example 11.16. f (z) = z. Then g(z) = 1/z (|z| > 0), so f has a simple pole at∞.

Example 11.17. f (z) = ez. Then g(z) = e1/z (|z| > 0) and f has an isolated essential
singularity at∞.

Example 11.18. f (z) = 1/(sin z) (z ±= nπ ,n ∈ Z). Then g(z) = 1/ sin(1/z). We cannot
say that f has an isolated essential singularity at∞, because f is not differentiable in
{z ∈ C : |z| > R} for any R > 0. However, f certainly has some sort of singularity at∞.

In general, if f (z) has a sequence of isolated singularities zn such that zn → ∞, we say
that f has an essential (but not isolated) singularity at∞.

If f has a removable singularity at ∞ then g has a removable singularity at 0, so
may be rendered differentiable in {z ∈ C : |z| < 1/R}. Thus we may say that f is

differentiable (or analytic) at∞, and define

f (∞) = g(0) = lim
z→0

g(z)

and now
f (∞) = lim

z→∞
f (z)

For instance, if f (z) = 1/z then g(0) = 0 so f (∞) = 0.

Further, we say that f has a zero of order m at∞ if g has a zero of order m at 0. Thus
if f (z) = 1/zm (|z| > 0,m ∈ Z,m > 0) then g(z) = zm and f has a zero of order m at∞.

In general, any statement about the behaviour of f at ∞ can be translated into one
about g at 0 – and this is how to define or prove such a statement.

11.6 Meromorphic Functions

Poles are not, as singularities go, particularly nasty, and it is of interest to consider a
class of functions more general than differentiable ones.

DEFIN IT ION 11.19. If f is differentiable everywhere in a domain D except for points
at which f has a pole, then f is meromorphic in D.

For instance, f (z) = 1/z is differentiable in C \ {0}, and has a pole at 0, so it is
meromorphic in C. Similarly, f (z) = 1/(sin z) is differentiable in C \ {nπ : n ∈ Z}, and
has poles at nπ, so it is meromorphic in C.
We might go further, and consider functions meromorphic in the extended complex

plane – by which we mean that the only singularities of f , including∞, if necessary are
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poles. It is not necessary to introduce a special term for such functions, because they
turn out to have a simple description. Recall that a rational function is one of the form

f (z) = φ(z)/ψ (z)

where φ ,ψ are polynomial functions. Then we have:

PROPOSIT ION 11.20. A function is meromorphic in the extended complex plane if and
only if it is rational.

Proof. Clearly a rational function is meromorphic in C∪ {∞}.
Suppose conversely that f is meromorphic in C∪ {∞}. Since f is differentiable at∞

or has a pole at∞, there exists R > 0 such that f is differentiable in

{z ∈ C : |z| > R}

So the poles, other than∞, occur inside the closed disc

{z ∈ C : |z| ≤ R}

Since poles are isolated singularities, each pole has a neighbourhood that contains no
other poles. Indeed, if there were an infinite set S of poles inside |z| ≤ R, there would
be a limit point of S. This is not possible because the poles are isolated. This closed
disc contains only finitely many poles, say z1 , . . . , zk . Let the orders of these poles be
n1, . . . ,nk. Define

g(z) = (z− z1)
n1 · · · (z − zk)

nk f (z)

This is differentiable throughout C, hence analytic, so it has a Taylor series

g(z) =

∞±

n=0

anz
n (z ∈ C)

Now the polynomial

ψ(z) = (z− z1)
n1 · · · (z− zk )

nk

has a pole of order n1 + · · · + nk at∞, since

ψ

·
1

z

¸
=

·
1

z
− z1

¸n1

· · ·
·
1

z
− zk

¸nk

=
1

zn1+···+nk
+ · · ·

Since f has at worst a pole of order N at∞ for some N it follows that g(z) has a pole of
order

M = n1 + · · · + nk + N

at∞. Now

g(1/z) =

∞±

n=0

anz
−n (|z| > 0)
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and since this has a pole of order M at 0 we must have an = 0 for n> M. Therefore

g(z) = a0 + · · · + aMz
M

which is a polynomial, so f (z) = g(z)/ψ(z), which is rational.

A function meromorphic only in C need not be rational, as the example 1/(sin z)
shows. This is not rational since it has infinitely many poles, but we have already seen
that it is meromorphic in C. So the behaviour at infinity is important.

11.7 Exercises

1. Find the Laurent expansions of the following functions of z around z = 0:

(i) (z− 3)−1

(ii) (z− a)−k (a ∈ C, k = 1, 2, 3, . . .)
(iii) 1/(z(1− z))

(iv) 1/((z− a)(z− b)) (a,b,∈ C)
(v) z3e1/z

(vi) exp(z+ 1/z)

(vii) cos(1/z)
(viii) exp(z−5)
In each case, specify the largest annulus in which the expansion is valid.

2. Find the Laurent expansions of the following functions on the stated annulus:
(i) (z − 1)−2(z − 2)−1 on 0 < |z| < 1

(ii) (z − 1)−2(z − 2)−1 on 1 < |z| < 2

(iii) (z − 1)−2(z − 2)−1 on 2 < |z| < 3

(iv) exp(−z−2) on |z| > 0

(v) (1− z− z2)−1 in powers of z− 1 on 0 < |z− 1| < 1

(vi) ez/(1+ z2) on |z| > 1

3. Which of the following functions have a Laurent expansion around the given point
z0 (that is, in powers of z − z0)? (For multivalued functions, choose one particular
definition on a domain that makes it single-valued.)
(i)
√
z about z0 = 1

(ii)
√
z about z0 = 0

(iii) Log z about z0 = 0

(iv) Log z about z0 = 3

(v)
»
1+√z about z0 = 0

(vi) tan−1(1+ z) about z0 = 0

(vii) sin−1(z) about z0 = 0

(viii)

¼
(π/2)− sin−1(z) about z0 = 1

(ix) z2cosec(1/z) about z0 = 0

(x)

¼
(π/4)− sin−1(z) about z0 = 1/

√
2
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4. Prove the validity of the Laurent expansion

1

(z− 1)(z− 2)
=

∞±

n=0

2−(n+1)zn +

∞±

n=1

z−n

on a suitable annulus, and state which annulus.
5. Find Laurent series for (z2 − 1)−1 and (z2 + 1)−1 in powers of z+ i and z− i, and

say in which annuli these are valid.
6. Let a, b ∈ C. Show that

exp(az+ bz−1) =

∞±

−∞

anz
n

where

an =
1

2π

´ 2π

0

e(a+b) cos θ cos[(a− b) sin θ − nθ ]dθ

7. Let a ∈ C. Show that

sin(a(z + z−1)) =

∞±

−∞

anz
n

where

an =
1

2π

´ 2π

0
sin(2a cos θ) cos nθ dθ

8. Find the poles of the functions:
(i) 1/(z2 + 1)

(ii) 1/(z4 + 16)

(iii) 1/(z4 + 2z2 + 1)

(iv) 1/(z2 + z− 1)

9. Describe the type of singularity at 0 of each of the following functions:
(i) sin(1/z) (z ±= 0)

(ii) z−3 sin2 z

(iii) z cot z (z ±= nπ ,n ∈ Z)

(iv) cosec2z− z−2 (z ±= nπ ,n ∈ Z)

(v) (cos z − 1)/z2

(vi) (sin z− z + z3/6)/z7

10. Let D be a disc centre z0 , let f be differentiable on D except at z0, and suppose that
| f (z)| is bounded on D \ {z0}. Show that z0 is a removable singularity of f . (Hint:
negative Laurent terms are 0 – why?)

11. Find all singularities of the following functions, and say which are poles:
(i) (z + z−1)−1

(ii)
cosπ z

1− 4z2

(iii) exp(z+ z−1)
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12. Construct a function defined on C∪ {∞} having only the following singularities:
(i) A pole of order 2 at∞.

(ii) A simple pole at each of the points e2π ik/p , k = 0 , . . . ,p− 1, p an odd integer
≥ 2.

(iii) A simple pole at z = 2 and a pole of order 5 at z =
√
2.

13. Let p(z), q(z) be polynomials of degrees m,n respectively. Describe the behaviour at
infinity of:
(i) p(z)+ q(z)

(ii) p(z)q(z)

(iii) p(z)/q(z)

14. Find all singularities, and the behaviour at infinity, of the functions:
(i) (z− z3)−1

(ii) z5/(2 − z2)2

(iii) (ez− 1)−1 − 1/z

(iv) cot 1/z
(v) (cos z)z−2
(vi) ((cos z)− 1)z−2

(vii) cot(1/z) − 1/z

(viii) sin(1/ cos(1/z))
15. Let ± be a circle in the complex plane, or a straight line. Is its image on the Riemann

sphere also a circle?
16. Find the poles and zeros of tan z. Show that tan z is meromorphic in C, but is not a

rational function.
17. Show that (z + 1 + z−1)−1 has a removable singularity at z = 0. Find its Taylor

expansion, and the radius of convergence of this.
18. Verify Picard’s Theorem directly for the functions:

(i) ez
(ii) tan2 z
(iii) z2

(iv) sin z
(v) e1/z
(vi) cos z
(vii) tan z
(viii) A function of your own choice.

19. Let f (z) have a pole of order n at z = a. Define the principal part φ(z) of f (z) to be
the sum of the negative-power terms in the Laurent expansion of f (z) in powers of
z− a. Prove that f (z)− φ(z) is differentiable at z = a.

20. Show that in a neighbourhood of a pole, a complex function is the sum of a rational
function and a differentiable one.

21. Suppose that f is differentiable on C except at poles, and that∞ is either a pole or
a removable singularity of f . Show that:
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(i) f has only finitely many poles.
(ii) f −

∑
r pr is constant, where the poles of f are at points ar and the pr are the

corresponding principal parts of f (defined in Exercise 19).
(iii) f is a rational function, and

∑
r pr is its ‘partial fraction’ decomposition.

22. Let f : C → C be differentiable, with f (z) ±= 0 for all z ∈ C. Suppose that
limz→∞ f (z) exists and is non-zero. Prove that f is constant.



12 Residues

Among the many applications of complex analysis are the explicit computation of def-
inite integrals, the summation of series, and counting how many zeros a function has in
a given region of C. Although such questions are not as important a part of pure math-

ematics as they once were, they are still very relevant to practical applications. Further,
the power of the method and its wide applicability demonstrate the advantage of general
principles and deep theorems over manipulative ingenuity.
The basic idea in all of these applications is to use Cauchy’s Theorem to exploit the

exceptional nature of the term b1/(z − z0) in the Laurent expansion of a differentiable
function.

12.1 Cauchy’s Residue Theorem

The residue of f at z0 is determined by the special coefficient b1 just described:

DEFIN IT ION 12.1. If f has an isolated singularity at z0 and a Laurent expansion

f (z0 + h) =

∞±

n=0

anh
n +

∞±

n=1

bnh
−n (0< |h| < R)

then the residue of f at z0 is
res ( f , z0) = b1

From Theorem 11.1 we immediately deduce that

res ( f , z0) =
1

2π i

²

Cr

f (z)dz (12.1)

where Cr(t) = z0+eit (t ∈ [0, 2π ]) and 0< r < R. This shows the relevance of residues
to integration.

DEFIN IT ION 12.2. A closed path γ is a simple loop if every point z not on γ has

w(γ , z) = 0 or w(γ , z) = 1.

As usual, the set of points z ∈ C satisfying w(γ , z) ±= 0 (which in this case means

w(γ , z) = 1) are said to be inside γ .

In applications, simple loops will all be made up of straight line segments and parts of
circles, as in Figure 12.1. All the simple loops encountered will be Jordan contours (that
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Figure 12.1 Simple loops in C.

Figure 12.2 A simple loop in C that is not a Jordan contour.

is, they do not self-intersect), but that is not essential for the theory. (Figure 12.2 shows
a simple loop according to our definition that is not a Jordan contour.) What matters is
that the points inside γ all have w(γ , z) = 1. (In particular, γ winds once anticlockwise
around such points.)
In such cases, we have:

THEOREM 12.3 (Cauchy’s Residue Theorem). Let D be a domain containing a simple
loop γ and the points inside γ . If f is differentiable in D except for finitely many isolated
singularities at z1, . . . , zn inside γ , then

²

γ

f (z)dz = 2π i

n±

r=1

res ( f , zr)

Proof. Since D is open we can find circles Sr(t) = zr + εre
it (t ∈ [0, 2π]) round the zr

such that Sr and points inside it lie inside D, and such that Sr contains no singularity of
f other than zr , Figure 12.3. Then the collection of paths

−γ ,S1 , . . . ,Sn

satisfies the hypotheses of Theorem 8.9, because

w(−γ , z) = w(Sr , z) = 0 (z ±∈ D)

w(−γ , zr) = −w(γ , zr) = −1 since zr is inside γ
w(Sm, zr) = 0 if m ±= r, 1 if m = r
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Figure 12.3 Small circular contours around each isolated singularity.

Therefore

w(−γ , z)+ w(S1 , z)+ · · · + w(Sn, z) = 0

for all z ±∈ D.
By the Generalised Cauchy Theorem,

²

−γ

f +

²

S1

f + · · · +
²

Sn

f = 0

so that
²

γ

f =

²

S1

f + · · · +
²

Sn

f

= 2π i · res ( f , z1) + · · · + 2π i · res ( f , zn)

by (12.1).

Alternative Proof. Instead of the Generalised Cauchy Theorem we can use Laurent
series: the proof is instructive but less elegant. Around each zr there is a Laurent
expansion of f , which we split into three parts:

f (z) = Qr(z) +
res ( f , zr)
z− zr

+ Pr(z) (12.2)

where

Qr(z) =

∞±

n=2

bn(z− zr)
−n

Pr(z) =

∞±

n=0

an(z− zr)
n

Now Pr(z) is differentiable in a neighbourhood of zr, and Qr(z) + res ( f , zr)/(z− zr) is
differentiable for z ±= zr since all but a finite number of the bn are zero. Therefore

h(z) = f (z)−

n±

r=1

Qr(z)−

n±

j=1

res ( f , zr)
z− zr

(12.3)
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is differentiable inD, except perhaps at z1, . . . , zn. But from (12.2) it is also differentiable
in a neighbourhood of each zr. Hence h(z) is differentiable inD, so by Cauchy’s Theorem

²

γ

h(z)dz = 0 (12.4)

But Qr(z) = T
²
r(z) where

Tr(z) =

∞±

n=2

bn

−n+ 1
(z− zr)

−n+1

so that ²

γ

Qr(z)dz = 0 (12.5)

as well. Integrating round γ and using (12.4) and (12.5), we get

0 =

²

γ

f (z)dz − 0−

n±

r=1

res ( f , zr)
²

γ

(z − zr)
−1

dz

=

²

γ

f (z)dz − 2π i

n±

r=1

res ( f , zr)

12.2 Calculating Residues

The Residue Theorem can be used to calculate integrals – and not just round simple

loops. For it to be of much use, we must find ways to calculate residues. The following
two lemmas are very useful in this respect.

LEMMA 12.4. (i) If z0 is a simple pole of f then

res ( f , z0) = lim
z→z0

(z− z0)f (z)

(ii) If f (z) = p(z)/q(z) where p(z0) ±= 0, q(z0) = 0, q²(z0) ±= 0, then

res ( f , z0) = p(z0)/q²(z0)

Proof. We have already done part (i) in the previous chapter as Proposition 11.10, but
to recap: we have

f (z) =
b1

z − z0
+

∞±

n=0

an(z − z0)
n

and so

(z− z0)f (z) = b1 +

∞±

n=0

an(z− z0)
n+1

which tends to b1 as z→ z0 .

For (ii), note that

lim
z→z0

(z− z0)p(z)

q(z)
= lim
z→z0

p(z)

³´
q(z)− q(z0)

z− z0

µ

since q(z0) = 0, and this is equal to p(z0)/q²(z0).
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For example, if

f (z) =
cosπ z

z976

then

res ( f , 1) =
cosπ

976 · 1975
=

1

976

LEMMA 12.5. If z0 is a pole of f of order m then

res ( f , z0) = lim
z→z0

¶
1

(m − 1)!

dm−1

dzm−1
((z− z0)

mf (z))

·

Proof. We have

f (z) =
bm

(z− z0)m
+ · · · +

b1

z− z0
+

∞±

n=0

an(z− z0)
n

so that

(z− z0)
mf (z) = bm + · · · + b1(z− z0)

m−1
+

∞±

n=0

an(z− z0)
m+n

Therefore

dm−1

dzm−1
((z− z0)

mf (z)) = (m− 1)!b1 +

∞±

n=0

(m + n)!

(n+ 1)!
an(z− z0)

n+1

Now take limits.

For example, consider

f (z) =

´
z+ 1

z− 1

µ3

which has a triple pole at z0 = 1. Then

(z− 1)3f (z) = (z + 1)3

and so
1

2!

d2

dz2
((z− 1)3f (z)) =

6

2!
(z+ 1)

which tends to 3 · 2 = 6 as z→ 1. So res ( f , 1) = 6.

On occasion another technique may be brought into play: working out the appropri-
ate part of the Laurent series. (It is a waste to work out the whole thing, because the
whole point about residues is that we do not need the whole thing, but only b1 .) For
instance:

f (z) =
1

z2 sin z

= 1/

´
z2
´
z −

z3

6
+ · · ·

µµ

=
1

z3

´
1−

z6

6
+ · · ·

µ−1
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=
1

z3

´
1+

z6

6
+ · · ·

µ

=
1

z3
+

1

6z
+ · · ·

so that res ( f , 0) = 1/6.

12.3 Evaluation of Definite Integrals

We now consider a number of techniques for calculating various kinds of definite
integral.

I:

± 2π

0

Q(cos t, sint)dt

Let C(t) = eit (t ∈ [0, 2π]) be the unit circle. If

z = C(t) = eit

then

cos t =
1

2

´
z+

1

z

µ

sin t =
1

2i

´
z−

1

z

µ

from which we get
² 2π

0

Q(cos t, sin t)dt =
²

C

Q

´
1

2

´
z+

1

z

µ
,
1

2i

´
z−

1

z

µµ
dz

iz

= 2π i±

where ± is the sum of the residues of
1

iz
Q

´
1

2

´
z+

1

z

µ
,
1

2i

´
z−

1

z

µµ
(12.6)

inside C.

For example, consider
² 2π

0

(cos3 t + sin2 t)dt

Then (12.6) becomes

1

iz

¸
1

8

´
z +

1

z

µ3

−
1

4

´
z−

1

z

µ2
¹
=

1

8i
z2 −

1

4i
z+

3

8i
+

1

2iz
+

3

8iz2
−

1

4iz3
+

1

8iz4

which has a pole inside C with residue 1/2i. So the integral is 2π i/2i = π .
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If Q is at all complicated, the computations can become very tedious. Sometimes

integrals of this kind can be found from the real and imaginary parts of an integral
²

C

g(z)dz

with a suitable choice of g. For instance,
²

C

ez

z
dz = 2πi

since ez/z has residue 1 at z = 0. Therefore
² 2π

0

ecos t+i sin t

eit
dt = 2π i

so
² 2π

0
e
cos t+i sin t

dt = 2π

and
² 2π

0

ecos t [cos(sin t))+ i sin(sin t)]dt = 2π

Equating real and imaginary parts,
² 2π

0

ecos t cos(sin t) = 2π

² 2π

0

ecos t sin(sin t) = 0

II:

±
∞

−∞

f (x)dx

The real integral
²
∞

−∞

f (x)dx (12.7)

is defined to be

lim
x1→−∞, x2→∞

² x2

x1

f (x)dx (12.8)

provided the limit exists. The techniques we are about to discuss allow the calculation
of

lim
R→∞

² R

−R

f (x)dx (12.9)

which is known as the Cauchy principal value of the integral, denoted by

P

²
∞

−∞

f (x)dx
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If (12.8) exists then so does (12.9) and the two are equal. But the Cauchy principal value
may exist when (12.8) does not. For example

² R

−R

xdx = [x2/2]R−R = 0

so that

P

² R

−R

x dx = 0

But clearly (12.8) does not exist when f (x) = x.

It follows that when we use this technique below, we must take into account the
convergence of (12.8). This, in part, leads to condition (ii) of the following:

PROPOSIT ION 12.6. Suppose that:

(i) A function f is differentiable in the upper half-plane {z ∈ C : im z ≥ 0} except for a
finite number of poles, none of which lies on the real axis.

(ii) If SR(t) = Reit (t ∈ [0, 2π ]) then there is a constant A such that for large R

|f (z)| ≤ A/R2

when z lies on SR.

Then ² ∞

−∞

f (x) dx = 2π i±

where ± is the sum of the residues of the poles of f in the upper half-plane.

Proof. Choose R large enough for (ii) to hold, and so that all the poles lie inside
SR + [−R, R], Figure 12.4.
By Cauchy’s Theorem,

² R

−R

f (x) dx+
²

SR

f (z)dz = 2π i±

with ± as stated. Now let R→ ∞. Then
ºººº
²

SR

f (z)dz

ºººº ≤
A

R2
πR =

πA

R

Figure 12.4 Choice of R in proof of Proposition 12.6.
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which tends to 0 as R→ ∞. Hence

lim
R→∞

² R

−R

f (x) dx = 2π i±

That is,

P

² ∞

−∞

f (x) dx = 2πi±

Now, (ii) tells us that |f (x)| ≤ A/x2 for large |x|, so it follows from real analysis that
² ∞

−∞

f (x) dx

exists. It is therefore equal to its Cauchy principal value, hence to 2πi±.

REMARK 12.7. Condition (ii) is certainly satisfied if f (z) = p(z)/q(z) where p and q are
polynomials such that q has no real zeros and the degree of q is greater than or equal to
the degree of p plus 2.
For example, consider

² ∞

−∞

dx

(x2 + a2)(x2 + b2)

where a, b > 0 are real, a ±= b. By Remark 12.7 this satisfies (ii), and (i) is obviously
true. The only poles of 1/((z2+ a2)(z2+ b2)) in the upper half-plane are simple poles at
ia, ib. The residue at ia is

lim
z→ia

z− ia

(z2 + a2)(z2 + b2)
=

1

2ia(b2− a2)

and similarly that at ib is
1

2ib(a2 − b2)

Therefore the value of the integral is

2πi

´
1

2ia(b2 − a2)
+

1

2ib(a2 − b2)

µ
=

π

ab(a+ b)

REMARK 12.8. In the proof of Proposition 12.6 we do not require f (z) to be real for z
on the real axis.

For instance, let

f (z) =
eiz

(z2 + a2)(z2 + b2)

Then on SR we have |eiz| = |e−y+ix| = e−y ≤ 1 for y ≥ 0, so (ii) holds. As before, there
are simple poles at ia, ib, but now the residues are

e−a

2ia(b2 − a2)
and

e−b

2ib(a2 − b2)
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Hence
²
∞

−∞

eix

(x2 + a2)(x2 + b2)
dx = π

´
e−a

a(b2 − a2)
+

e−b

b(a2 − b2)

µ

so, equating real and imaginary parts,
²
∞

−∞

cos x

(x2 + a2)(x2 + b2)
dx =

π

b2 − a2

´
e−a

a
−

e−b

b

µ

² ∞

−∞

sin x

(x2 + a2)(x2 + b2)
dx = 0

Of these, the second equality is actually obvious (why?), but the first is not.
We can try to generalise this method in (at least) two ways: by getting a better estimate

for
»
SR

f or by allowing f to have poles on the real axis. The first is dealt with in (III),
the second in (IV).

III:

±
∞

−∞

f (x)eixdx

PROPOSIT ION 12.9. Suppose that:

(i) A function f is differentiable in a domain containing the upper half-plane {z ∈ C :

im z ≥ 0} except for a finite number of poles, none on the real axis.
(ii) There is a constant A such that for large R

|f (z)| ≤ A/R for |z| = R

when z lies on SR. Then
² ∞

−∞

f (x)eix dx = 2π i±

where± is the sum of the residues of the poles of f (z)eiz in the upper half-plane.

Proof. It is possible to use the same contour as in (II) and prove that

lim
R→∞

²

SR

f (z)eiz dz = 0

but this calculates only the Cauchy principal value. Moreover, the convergence problem
in this case is much harder because all we know is that f behaves like 1/|x| for large |x|,
which on its own does not imply the existence of

²
∞

−∞

f (x)eixdx

More delicate arguments can overcome this obstacle, but it is easier to sidestep the whole
question by using a different contour, as in Figure 12.5.
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Figure 12.5 Contour for the proof of Proposition 12.9.

We prove that as X1,X2, Y→ ∞, each of
²

²r

f (z)eiz dz

for r = 2, 3, 4 tends to zero. It then follows as before that

lim
X1,X2→∞

² X2

−X1

f (x)e
ix
dx = 2πi±

as required.
Now we carry out the necessary estimates,

ºººº
²

²2

f (z)eiz dz

ºººº =
ºººº
² Y

0

f (X2 + it)eiX2−t idt

ºººº

≤

² Y

0

A

X2
e−tdt

≤
A

X2

for X2 large. Similarly
ºººº
²

²4

f (z)e
iz
dz

ºººº ≤
A

X1

Also
ºººº
²

²3

f (z)e
iz
dz

ºººº =
ºººº−

² X2

−X1

f (t + iY)e
it−Y

dt

ºººº

≤

ºººº
² X2

−X1

A

Y
e−Ydt

ºººº

= AY−1e−Y (X1 + X2)

For fixed X1 ,X2 this tends to 0 as Y → ∞. Now let X1 ,X2→ ∞.

As an example, take
² ∞

−∞

x3eix

(x2 + a2)(x2 + b2)
dx (a,b > 0, a ±= b)



254 Residues

which does not satisfy the conditions for (II), but does for (III). The integrand has simple

poles in the upper half-plane at ia and ib. Calculating the residues in the usual way,
applying Proposition 12.9, and equating imaginary parts yields

²
∞

−∞

x3 sin x

(x2 + a2)(x2 + b2)
dx =

π

b2 − a2
(b2e−b − a2e−a)

(Equating real parts proves that the corresponding cosine integral is zero, but again this
is obvious on other grounds.)

IV: Poles on the real axis.

If f (z) has poles on the real axis we make ‘indentations’ in the contour by drawing small

semicircles as in Figure 12.6. Suppose these semicircles have radii ε1 , ε2, . . .. Then we
proceed as above, but letting ε1, ε2 , . . . tend to 0 at the same time as R,X1 ,X2,Y → 0.

There is a problem here similar to that in case (II): all we calculate is a Cauchy
principal value

P

² b

a

f (x)dx = lim
ε→0

¸² x0−ε

a

f (x)dx+

² b

x0+ε

f (x)dx

¹

for a pole at x0. This again may exist even if
² b

a

f (x)dx = lim
ε1→0

² x0−ε

a

f (x)dx+ lim
ε2→0

² b

x0+ε

f (x)dx

does not. Thus
² 1

−1

dx

x

does not exist, but

P

² 1

−1

dx

x
= 0

Consequently there is a convergence problem, once the Cauchy principal value has
been obtained. Apart from this consideration, the hypotheses and conclusions of Propo-
sitions 12.6 for case (II) and 12.9 for case (III) remain valid even when poles occur
on the real axis, provided that ± is summed only over the non-real poles in the upper
half-plane.

Figure 12.6 Types of contour used when there are poles on the real axis.
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Figure 12.7 Contour used when there are poles on the real axis.

Rather than stating a cumbersome general theorem, we content ourselves with a
typical example:

²
∞

−∞

eix

x
dx

There is a real pole at 0, so we take a contour as in Figure 12.7.
As before, the integrals along ²2, ²3 , and ²4 tend to zero. Since there are no poles

inside the contour,

lim
X1,X2→∞

¶²
−ε

−X1

eix

x
dx+

² X2

ε

eix

x
dx+

²

Cε

eiz

z
dz

·
= 0

But

eiz

z
=

1

z
+

∞±

n=1

inzn−1

n!
=

1

z
+ φ(z)

where φ is differentiable. Hence |φ(z)| ≤ M in a neighbourhood of 0, so

lim
ε→0

²

Cε

eiz

z
dz = lim

ε→0

²

Cε

´
1

z
+ φ(z)

µ
dz

= lim
ε→0

´
−

² π

0

1

εeit
iεe

it
dt

µ
+ lim

ε→0

²

Cε

φ(z)dz

= iπ

using the Estimation Lemma. Therefore

P

²
∞

−∞

eix

x
dx = iπ

Equating real and imaginary parts,

P

²
∞

−∞

cos x

x
dx = 0

P

² ∞

−∞

sin x

x
dx = π
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The first integral exists only as a principal value, since cos(x)/x behaves like 1/x for

small |x|. But for the second we have

P

² ∞

−∞

sin x

x
dx = lim

ε→0

´²
−ε

−∞

sin x

x
dx +

² ∞

ε

sin x

x
dx

µ

= 2 lim
ε→0

²
∞

ε

sin x

x
dx

This limit exists, hence by definition it equals

2

² ∞

0

sin x

x
dx

because sin(x)/x→ 1 as x→ 0. Hence we can remove the P from the second expression
above. Further, we have also proved that

² ∞

0

sin x

x
dx =

π

2

V:

±
∞

−∞

eax

φ(ex)
dx

For integrals of this type we integrate around a contour like that in Figure 12.8.
In this case, on ²3 , if we substitute z = −t + 2π i, then −X2 ≤ t ≤ X1, so that

²

²3

eaz

φ(ez)
dz =

² X1

−X2

e−at+2π ia

φ(e−t+2π i)
(−1)dt

= e2π ia
²
−X2

X1

e−at

φ(e−t )
dt

Putting t = −x, this equals

−e2π ia
² X2

−X1

eax

φ(ex)
dx

If φ is such that
²

²r

eaz

φ(ez)
dz→ 0 as X1, X2 → ∞ (r = 2, 4)

then we obtain

(1− e2πai
² ∞

−∞

eax

φ(ex)
dx = 2π±

Figure 12.8 Contour for integrals of type (V).
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where ± is the sum of the residues of eaz/φ(z) at poles between the lines im z = 0,

im z = 2π.

For example, consider
² ∞

−∞

eax

e2x + 1
dx (0 < a < 1)

The relevant singularities are at iπ/2, 3iπ/2, with corresponding residues

− 1
2
eiπa/2 − 1

2
e3iπa/2

Hence the value of the integral is

2πi

1− e2π ia
(−1

2
eiπa/2 − 1

2
e3iπa/2)

Putting k = eiπa/2 this is easily seen to be equal to
π

2 sin(πa/2)

VI: Short cuts.

You should always be on the lookout for quick methods, other than those given above.
We give two examples, each of independent interest.

Example 12.10. We use contour integration to prove that the integral of the ‘bell curve’
or ‘gaussian’, which is of importance in probability theory, is

² ∞

−∞
e−x

2

dx =
√
π

This result is usually obtained by squaring the integral, rewriting it as
´² ∞

−∞
e
−x2

dx

µ ́ ² ∞

−∞
e
−y2

dy

µ
=
² ∞

−∞

² ∞

−∞
e
−(x2+y2 )

dxdy

and then changing to polar coordinates. For a long time it was thought that no evaluation
by contour integration existed, but several such proofs are now known. We give one of
them, from Remmert [15]. Consider

f (z) = e−z
2

1+ e−2az

with

a = (1+ i)

¼
π

2

Then a2 = iπ , so

f (z) − f (z + a) = e
−z2

(12.10)

The poles of f are simple and located at the points − 1
2a+ na with n ∈ Z.

Now integrate f over the rectangle with corners −r, s, s + i im(a),−r + i im(a) with
r, s > 0. The only pole of f inside this rectangle is at a

2 , and its residue is
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res( f ,a/2) =
e
− 1
4a

2

−2ae−a2
=

−i
2
√
π

This follows from Lemma 12.4, which states that

res
½g
h
, x
¾
=

g(x)

h²(x)

if h has a simple zero at x and g(x) ±= 0.

Using the residue theorem and (12.10), it is easy to see that
² ∞

−∞
e−x

2
dx = lim

r,s→∞

² s

−r
e−x

2
dx = 2π i res( f , a/2)=

√
π

since the integrals along the vertical sides of the rectangles converge to zero as
r, s→ ∞.

Example 12.11. An integral of great importance in applied mathematics is
² ∞

−∞
e
iλx

e
−x2

dx (λ ∈ R)

The function e−z2 is differentiable throughout C. If γ is the rectangle with vertices at
−R, R,R − iλ/2,−R − iλ/2, then

²

γ

e−z
2

dz = 0

As R→ ∞, the integrals over the vertical edges of the rectangle tend to zero. The other
two converge. Hence

² ∞

−∞
e−x

2

dx =
² ∞

−∞
e−(x−iλ/2)

2

dx

=
² ∞

−∞
e−x

2
eiλxeλ

2/4dx

Therefore ² ∞

−∞
eiλxe−x

2
dx = eλ

2/4

² ∞

−∞
e−x2dx

The latter integral is a constant; it has just been evaluated in Example 12.10 and equals√
π . So

² ∞

−∞
eiλxe−x

2

dx = eλ
2/4
√
π

(Although we can derive Example 12.10 from this by setting λ = 0, we need Exam-

ple 12.10 to get the result.)

12.4 Summation of Series

Residues can also be used to find explicit expressions for sums of suitable infinite
series, based on the idea that the functions cotπ z and cosec π z have simple poles at
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z = n ∈ Z. If f is a function that is differentiable at all z = n ∈ Z then it is easy to check
that

res ( f (z) cot πz, n) = f (n)

π

res ( f (z) cosecπz, n) =
(−1)nf (n)

π

This suggests a method for summing certain series, as follows. Let CN be the square
whose vertices are

(N + 1
2)(³1³ i)

parametrised, as usual, in the anticlockwise direction, Figure 12.9. We claim that cotπ z
and cosecπ z are bounded on CN , where the bound is independent of N.
To prove this, first note that on the two horizontal sides z = x + iy, where |y| ≥ 1

2 .

Now

| cotπ z| =
º
º
º
º

eiπ z+ e−iπz

eiπ z− e−iπz

º
º
º
º

≤

º
º
º
º

|eiπz| + |e−iπ z|
|eiπz| − |e−iπ z|

º
º
º
º

=

º
º
º
º

e−πy + eπy

e−πy − eπy

º
º
º
º

= coth |πy|

≤ coth π/2

Also

|cosec πz| = ( 1
2
|eiπz− e−iπz|)−1

≤ (
1
2|e
−π y − eπy|)−1

= (sinh |πy|)−1

≤ (sinhπ/2)−1

Figure 12.9 Square contour used to sum series.
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On the other two sides of the square, z = ³(N + 1
2
) + it, so

| cotπ z| = | tanh π t|

=

ºººº
1− e−2π t

1+ e−2π t

ºººº
≤ 1

and

|cosec πz| = | sinπ z|−1

= | cos(iπ t)|−1

= (cosh |πt|)−1

≤ 1

Hence there is a constantM such that | cotπ z| ≤ M and |cosecπ z| ≤ M for any z onCN .

Suppose now that for large enough |z| we have

|f (z)| ≤
A

|z|2

Then we claim that
± = 0

where ± is the sum of the residues of f (z) cot π z. By Cauchy’s Residue Theorem,
²

CN

f (z) cot π zdz = 2πi±N

where ±N is the sum of the residues of f (z) cot πz inside CN . As N → 0, clearly ±N →

±, so it is sufficient to prove that the integral tends to 0. But
ºººº
²

CN

f (z) cot π zdz
ºººº ≤

A

N2
M(8N + 4)

for large enough N by the Estimation Lemma. As N→ 0, this tends to 0 as claimed.

Usually, ± is an infinite series, and since it is zero we can sum certain related series.
This is best illustrated by an example, and the obvious one to try is f (z) = 1/z2.

At an integer n ±= 0 the function z−2 cotπ z has a simple pole with residue 1/(n2π ),
whereas at the origin it has a triple pole with residue −π/3. Hence

0 = ± = −
π

3
+

−1±

n=−∞

1

n2π
+

∞±

n=1

1

n2π

= −
π

3
+

2

π

∞±

n=1

1

n2

Hence
∞±

n=1

1

n2
=
π 2

6

which is a theorem originally proved by Euler, using a different (non-rigorous) method.
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If we use cosec πz instead of cotπ z a similar result applies, allowing us to sum series
of the form

∑
(−1)nf (n). For instance, using f (z) = 1/z2 and arguing much as above,

we can prove that
∞±

n=1

(−1)n+1
1

n2
=
π2

12

12.5 Counting Zeros

A rather different use for residues is to calculate the number of zeros of a function that
is differentiable inside a simple loop. We begin with:

THEOREM 12.12. Suppose that f is differentiable, apart from a finite set of poles, in a
domain D containing a simple loop γ and all points inside γ . If f has no zeros or poles
on γ then

1

2π i

²

γ

f ²(z)

f (z)
dz = N − P

where N is the number of zeros of f inside γ and P is the number of poles of f inside γ ,
each counted according to multiplicity.

Proof. By Cauchy’s Residue Theorem, the integral is the sum of the residues of
f ²(z)/f (z) at its poles inside γ . If z0 is neither a zero nor a pole of f , then f ²/f is

differentiable at z0 . We show that:

(i) If f has a zero of order k at z1 then f ²/f has a pole with residue k.
(ii) If f has a pole of order m at z2 then f ²/f has a pole with residue −m.

To prove (i) note that in that case

f (z) = (z− z1)
kφ(z)

where φ(z1) ±= 0 and φ is differentiable in a neighbourhood of z1. Therefore

f
²
(z) = k(z − z1)

k−1
φ(z)+ (z− z1)

k
φ
²
(z)

so

f ²(z)

f (z)
=

k

z− z1
+
φ ²(z)

φ(z)

This has a simple pole at z1 with residue k, because φ ²/φ is differentiable at z1 . This
proves (i).
Similarly in case (ii)

f (z) =
ψ(z)

(z − z2)
m

where ψ(z2) ±= 0 and φ is differentiable in a neighbourhood of z2 . Therefore

f
²
(z) =

−mψ(z)

(z− z2)
m+1

+
ψ ²(z)

(z− z2)
m
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so

f ²(z)

f (z)
=

−m

z − z2
+
ψ ²(z)

ψ(z)

which has a simple pole at z2 with residue −m.
Now sum over all poles of f ²/f .

COROLLARY 12.13. Let γ be a simple loop in a domain D such that all points inside
γ are in D. If f is differentiable in D and has no zeros on γ then the number of zeros of
f inside γ is

1

2πi

²

γ

f ²(z)

f (z)
dz

From this we deduce another important theorem:

THEOREM 12.14 (Rouché’s Theorem). Suppose that f and g are differentiable in a
domain D that contains a simple loop γ and all points inside γ . If

|f (z) − g(z)| < |f (z)| (12.11)

for all z = γ (t) (t ∈ [a,b]) then f and g have the same number of zeros inside γ .

Proof. Let F(z) = g(z)/f (z). By (12.11),

|1− F(γ (t))| < 1 (t ∈ [a, b]) (12.12)

Inside D,

F has a zero ⇐⇒ g has a zero
F has a pole ⇐⇒ f has a zero

Thus by Theorem 12.12 it is enough to prove that
²

γ

F²(z)

F(z)
dz = 0

To do so, let ²(t) = F(γ (t)). By (12.12),

|1− ²(t)| < 1 (t ∈ [a,b])

so ² lies inside the circle centre 1 radius 1, Figure 12.10. Now
²

γ

F²(z)

F(z)
dz =

² b

a

F²(γ (t))

F(γ (t))
dt

=

² b

a

²(t)

²(t))
dt

=

²

²

dz

z

= 2π iw(² , 0)
= 0

from Figure 12.10.
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Figure 12.10 Path ² in proof of Rouché’s Theorem.

As an example of Rouché’s Theorem in action, we give a second proof of the
Fundamental Theorem of Algebra, Theorem 10.9. Let

g(z) = z
m
+ a1z

m−1
+ · · · + am

f (z) = zm

Then

|f (z)− g(z)| = |a1zm−1 + · · · + am|

and for z ±= 0
º
º
º
º

1

zm

º
º
º
º
|f (z)− g(z)| =

º
º
º
º

a1

z
+ · · · +

am

zm

º
º
º
º

The right-hand side tends to 0 as |z| → ∞, so there exists R > 0 such that if |z| > R

then
º
º
º
º

a1

z
+ · · · + am

zm

º
º
º
º
< 1

and then
|f (z)− g(z)| < |zm| = f (z)

Therefore by Rouché’s Theorem f and g have the same number of zeros inside {z ∈
C : |z| < R}. Since f has m zeros (counting multiplicities) so does g. But g cannot

have more than m zeros, so every polynomial of degree m over C has exactly m zeros,

counting multiplicities. This is the Fundamental Theorem of Algebra.

12.6 Exercises

1. Find the residue of f at z0 in the following cases:
(i) f (z) = z−3 sin z (z ±= 0), z0 = 0

(ii) f (z) = ezz−n−1 (z ±= 0), z0 = 0

(iii) f (z) = exp(1/z) (z ±= 0), z0 = 0
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(iv) f (z) = z2(z2 + a2)−3 (z ±= ³ia), z0 = ia,−ia, where a ∈ R
(v) f (z) = (1+ z2 + z4)−1 (z ±= exp (rπi/3), r = 1, 2, 4, 5), z0 = exp (π i/3)

2. Find the residue of the given function at each of its isolated singular points, includ-
ing infinity (provided this is also isolated – that is, not the limit of a sequence of
finite singularities).

(i) 1/(z3 − z5)

(ii) ez/(z2(z2 + 5))

(iii) cot3 z
(iv) (sin z−1)−1

(v) (z cos z−2)−1

3. If f has a pole of order 2 at z0, show that the residue of f at z0 is h²(z0), where
h(z) = (z− z0)

2f (z).

4. Let γ (t) = eit, (t ∈ [0, 2π ]). Find, by residues, the value of
²

γ

dz

z2 − 2az+ 1
(a> 1)

Hence calculate
² 2π

0

dt

a− cos t

What happens if a < −1? If −1 ≤ a≤ 1?

5. Verify the following:

(i)

² π

0

dt

1+ b cos2 t
=

π
√
b+ 1

(b > −1)

(ii)

² ∞

0

dx

1+ x4
=

π

2
√
2

(b > −1)

(iii)

² π

0

log x

1+ x2
dx = 0

(iv)

² ∞

−∞

x sin πx

1− x2
dx = π

(v)

² ∞

−∞

(log x)2

1+ x2
dx = π 3

8

6. Show that
² ∞

−∞

(10x)2

(x2 + 4)2(x2 + 9)2
dx = π

7. Show that
² ∞

0

cos 5x
x4 + a4

dx = π

2a3
e−5a/

√
2 sin

´
5a√
2
+ π

4

µ
(a > 0)
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8. Evaluate:

(i)

² 2π

0

cos4 t + sin4 t dt

(ii)

² 2π

0
sin

3
t · cos t+ cos

3
t · sin t dt

(iii)

² 2π

0

2 cos3 t + 3 cos2 t dt

9. If n ∈ Z,n > 0, prove:

(i)

² 2π

0

exp(cos t) cos(nt − sin t) dt = 2π/n!

(ii)

² 2π

0

exp(cos t) sin(nt− sin t) dt = 0

10. Evaluate, by integrating suitable functions round a semicircle:

(i)

² ∞

0

dx

1+ x2 + x4

(ii)

² ∞

0

cosmx

x2 + a2
dx (a,m > 0)

11. Prove that
²
∞

0

x2

(x2 + a2)3
dx =

π

16a3
(a > 0)

12. By integrating round a rectangle whose vertices lie at R,R + i,−R + i,−R, and
letting R→ ∞, show that

²
∞

−∞

cosh(cx)

cosh(πx)
dx = sec(c/2) (c ∈ [−π ,π ])

13. Prove that ²
∞

0

ta−1(t + 1)−1 dt =
π

sin πa
(a ∈ [0, 1])

by making the substitution t = ex and integrating eaz(ez+1)−1 around the rectangle
with vertices ³R,³R + 2πi.

14. Inversion Formula for the Laplace Transform. Suppose that F is differentiable in C
except for a finite number of poles, of which z1, . . . , zn satisfy re z < a and none lies
on the line re z = a. If there exist M > 0, b > 0, c > 0 such that |F(z)| < M/|z|c

for |z| < b, show that

f (t) = lim
R→∞

² a+iR

a−iR
e
zt
F(z) dz = 2π i

n±

r=1

res(e
zt
F(z), zr)

If F(z) = α(z2 + α2)−1 (α > 0) show that f (t) = sinαt.

15. Use real analysis to prove Jordan’s inequality:

sin t

t
≥

2

π
(t ∈ [0,π/2])
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Hence show that if SR(t) = Reit (t ∈ [0,π ]) then

lim
R→∞

²

SR

eimz

z
dz = 0 (m > 0)

By integrating eimz/z along the contours ²1 ,Cε ,²2, SR defined by:

²1(t) = t (t ∈ [−R,−ε])

Cε(t) = e
i(π−t)

(t ∈ [0,π ])

²2(t) = t (t ∈ [ε,R])

prove Dirichlet’s Discontinuous Factor:

² ∞

0

sinmx

x
dx =

⎧
⎨

⎩

0 if m = 0

π/2 if m > 0

−π/2 if m < 0

16. Show that:

(i)
z

ez− 1
= 1−

z

2
+

∞±

n=1

2z2

z2 + 4n2π 2

(ii) cosec z =
1

z
+

∞±

n=1

(−1)n2z

z2 − n2π2

(iii) cosec2 z =
∞±

−∞

1

(z − nπ )2

17. Sum the following series, where a ±∈ Z:

(i)

∞±

−∞

(n+ a)−2

(ii)

∞±

0

(n2 + a
2)−1

(iii)

∞±

0

(2n+ 1)
−2

(iv)

∞±

0

(−1)n(2n+ 1)−3

18. By integrating

zeibz

(a2 − z2) sinπ z

round a suitable contour, show that

∞±

n=1

(−1)n
n sinbn

a2 − n2
=
π

2

sinba

sinπa
(|b| < π )
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19. By considering f (z) = 1/(z− ξ )+ 1/z, show that when ξ ±∈ Z,

π cotπξ =
1

ξ
+

∞±

n=1

2ξ

ξ 2 − n2

20. Using the result of Exercise 19, integrate π cotπx along a suitable contour to show
that

log sinπ z = logπ z+

∞±

n=1

log(1− z
2
/n

2
)

where the log is chosen to make log 1 = 0 in each term. Taking exponentials, obtain
the infinite product expansion of the sine function (defined as the limit of suitable
finite partial products, by analogy with infinite sums):

sinπ z = π z

∞¿

n=1

(1− z
2
/n

2
)

21. If |a| > e, use Rouché’s Theorem to prove that the equation

ez = azn

has n roots with |z| < 1.

22. Find the number of zeros of the following polynomials that lie inside the unit circle:
(i) z9 − 2z6 + z2 − 8z− 2

(ii) 2z5 − z3 + 3z2 − z+ 8

(iii) z4 − 5z+ 1

23. How many zeros of z4+ 4z3 + 6z2 − 4z+ 3 lie inside the disc |z− 1| < 1?

24. Prove that however small ε > 0 is chosen, for all large enough n the function

1+ z−1 + (2!z2)−1 + (3!z3)−1 + · · · + (n!zn)−1

has all its zeros inside the disc |z| < ε.
25. Let p(z) be a polynomial of degree n, and suppose that p(z1) = p(z2) = 0 with

z1 ±= z2 . Show that there exists a zero of p²(z) within the circle centre 1
2
(z1+ z2) and

radius 1
2|z1− z2| cot(π/n).

26. Residues in Reverse. Show that the residue of tanp−1 πz at z = 1
2
is (−1)p/2π−1 ,

for integer p > 0. (Hint: integrate it round the rectangle with vertices at −iR, 1 −
iR, 1 + iR, iR, then let R→ ∞ and estimate sizes.)

27. Show that

(i)

² ∞

0

log x

1+ x2
dx = 0

(ii)

² ∞

0

log x

(1+ x2)2
dx = −π

4



13 Conformal Transformations

In mathematics we often encounter functions that preserve some structure that is of
interest. For example, in Euclidean geometry rigid motions preserve lengths, angles,
and areas, while changes of scale preserve the shape (but not the size) of geometric

figures. Homomorphisms of groups preserve group multiplication. Arithmetic modulo

n preserves addition and multiplication. Topological transformations preserve connect-
edness. Conversely, given an interesting class of functions, we can ask what structure
they preserve. This chapter deals with a property preserved by all differentiable (equiva-
lently analytic) complex functions, namely: angles between curves. Functions with this
property are called ‘conformal’.

The conformal property can be used in two directions. By studying differentiable
functions, we can prove theorems about curves; by studying curves, we can prove theo-
rems about differentiable functions. The second technique is of great importance in the
advanced ‘geometric’ theory of differentiable functions, but only the first falls within
our present scope. The method has interesting applications to potential theory and fluid
dynamics, and we outline the beginning of these. We also consider in moderate detail
several special conformal functions; in particular ‘Möbius maps’, often called ‘Möbius

transformations’, which have the remarkable property of mapping circles to circles.

13.1 Measurement of Angles

Since we are studying preservation of angles, we must discuss these first, in a manner

that is appropriate for this chapter. The use of a real number to measure an angle is not
always entirely satisfactory, because the same angle corresponds to many different real
numbers. However, if real numbers θ and φ represent the same angle, then θ − φ is

an integer multiple of 2π, and conversely, so the ambiguity is not too great. For many

purposes it can be avoided by making some artificial convention, such as the requirement

that −π < arg(z) ≤ π. For other purposes it is more convenient to measure angles in a
natural and unambiguous way, though one that is less familiar than the real numbers.

13.1.1 Real Numbers Modulo 2π

If x, y ∈ R we say that x and y are congruent modulo 2π , and write

x ≡ y (mod 2π )
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if there is an integer n such that x− y = 2nπ. Congruence modulo 2π is an equivalence
relation, so it partitions R into mutually disjoint equivalence classes. We denote the set
of all such equivalence classes by

R/2π

For each x ∈ R let p(x) be the equivalence class (or congruence class) to which x

belongs. This defines a function

p : R→ R/2π

and

p(x) = {x + 2nπ : n ∈ Z}

Given an angle measured by a real number θ , the same angle is measured by all
θ + 2nπ (n ∈ Z), and by these real numbers only. Instead of picking one of them, we
can represent the angle by the whole collection, namely p(θ). In other words, the natural
measure of an angle is not a real number, but an element of R/2π .
For instance, the real numbers

. . . ,−11π/3,−5π/3,π/3, 7π/3, 13π/3, . . .

all represent the same angle, and the set

{. . . ,−11π/3,−5π/3,π/3, 7π/3, 13π/3, . . .}

is the unique element of R/2π corresponding to this angle.

13.1.2 Geometry of R/2π

Geometrically, R/2π is a circle. To see this, define

q : R→ C q(x) = eix (x ∈ R)

The image of q is the unit circle in C, which we denote by

S = {z ∈ C : z = eix (x ∈ R)} = {z ∈ C : |z| = 1}

Since e2π i = 1, Proposition 5.3 shows that q(x) = q(y) if and only if x ≡ y (mod 2π ),
so

q(x) = q(y) ⇐⇒ p(x) = p(y) (13.1)

Therefore we can define

j : R/2π → S

as follows: if r ∈ R/2π then r = p(x) for some x ∈ R, and we set

j(r) = q(x)

By (13.1) this is independent of the choice of x ∈ R, and j is a bijection. Thus the
elements of R/2π are in natural one-to-one correspondence with the points of a circle.
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This bijection preserves continuity in a natural manner. If X ⊆ C we say that a func-
tion f : X → R/2π is continuous if and only if the composite function j ◦ f : X → S

is continuous in the usual sense, considering S as a subset of C. This accords with the
intuitive idea of geometric continuity if we think of R/2π as a circle. (In topological
terms, we use j to transfer the usual topology of S to R/2π, defining U ⊆ R/2π to be
open if and only if j(U) is open in S. Continuity of maps f : X→ R/2π in this topology
is equivalent to what we have just defined.)

13.1.3 Operations on Angles

We can define addition and subtraction of elements of R/2π , corresponding to geo-
metric addition and subtraction of angles. Let r, s ∈ R/2π. Pick x, y ∈ R such that
p(x) = r, p(y) = s, and define

r + s = p(x+ y)

r − s = p(x− y)

As usual we can verify that these definitions do not depend on the choice of x and y,

using (12.1).
We can restate the above in group-theoretic terms. The set G = {2nπ : n ∈ Z} is

a subgroup of the additive group of real numbers, hence a normal subgroup since the
latter is abelian. The quotient group R/G is what we have called R/2π . As an analogy,
consider the definition of the integers Zn modulo n as the quotient group Z/H where

H = {kn : k ∈ Z}.
In Zn we can also define multiplication. You should verify that this does not work for

R/2π. It fails because 2π is not an integer. However, we can sensibly multiply an angle
in R/2π by an integer, since this reduces to repeated additions or subtractions.

13.1.4 The Argument Modulo 2π

For z ∈ C \ {0} we can now define a ‘mod 2π’ version of arg z, namely

arc z = p(arg z) ∈ R/2π

The notation is deliberately chosen to resemble ‘arg’, and also reminds us that angles
are involved. The advantages of ‘arc’ over ‘arg’ are twofold. First, there is no ambiguity.

Second, and more important, the function

arc : C \ {0} → R/2π

is continuous. This is false for arg, for as z moves across the negative real axis, arg z
jumps from near π to near −π, because of the convention that −π < arg z ≤ π . In
contrast, since p(−π ) = p(π ), this defect is not shared by arc. In fact, if z = reiθ , r > 0,

then j(arc(z)) = eiθ . Using this, or directly, it is not hard to verify that

arc(z1z2) = arc z1 + arc z2 (13.2)

for all z1, z2 ∈ C\{0}. Again if we use arg this is true only up to integer multiples of 2π .
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Thus we have two distinct ways to represent an angle: as a uniquely defined ele-
ment of R/2π (an equivalence class of reals modulo 2π), or as a real number chosen
from this class, unique only up to integer multiples of 2π . Both are useful, and there
are advantages in passing between them at will. We do this in the proof of our next
result.

LEMMA 13.1. If γ : [a,b] → C is a path and γ ±(t0) exists and is non-zero for some
t0 ∈ [a, b], then γ has a tangent at z0 = γ (t0) making an angle arc γ ±(t0) with the real
axis.

Proof. Let γ (t) = x(t)+iy(t). Then the required angle θ belongs to the congruence class
modulo 2π of

tan−1(y±(t0)/x
±(t0)) = arg(x±(t0) + iy±(t0)) = arg γ ±(t0)

Taking congruence classes, we get

θ = arc γ ±(t0)

In future we will be less explicit about passing between R andR/2π .

DEFIN IT ION 13.2. If γ1 and γ2 are two paths meeting at z0 = γ1(t1) = γ2(t2) having
derivatives γ ±1(t1), γ

±
2(t2) ²= 0, then the angle between γ1 and γ2 at z0 is

θ = arc γ
±
1(t1)− arc γ

±
2(t2) ∈ R/2π

as in Figure 13.1.

Figure 13.1 Angle between two intersecting curves.

13.2 Conformal Transformations

In this section we consider functions f : D → C, where D is a domain. It is conve-
nient to distinguish the two copies of C by using (x, y) as coordinates in D and (u, v) as
coordinates in the image C. As usual we let z = x + iy, and we set w = u + iv. (The
classical notation for complex functions was w = f (z) before set theory came along.) If
f is differentiable on D we have

f (x+ iy) = u(x, y)+ iv(x, y)
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where u and v are real-valued functions of two real variables x, y. Hence f defines a
function from the subset D of the (x, y)-plane to the (u, v)-plane. A smooth path γ in D,
with

γ (t) = x(t) + iy(t) (t ∈ [a,b])

is mapped by f to a path

fγ (t) = f (γ (t)) = u(x(t), y(t)) + iv(x(t), y(t)) (t ∈ [a,b])

in the (u, v)-plane.
REMARK 13.3. Until now we have written composition as f ◦ γ , but from now on we
omit the circle in formulas when there is no confusion with the product. This avoids
undue proliferation of circles.
Suppose that z0 = γ (t0) and γ ±(t0) ²= 0 for some t0 ∈ [a,b]. By the chain rule,

( f γ )±(t0) = f ±(γ (t0))γ
±(t0) = f ±(z0)γ

±(t0)

Therefore

arc (( fγ )±(t0)) = arc ( f ±(z0)γ ±(t0))
= arc f ±(z0) + arc γ

±(t0) (13.3)

by (13.2).
Suppose that γ1 and γ2 are two paths through z0, say z0 = γ1(t1) = γ2(t2). Then (13.3)

implies that fγ1 and fγ2 meet at the same angle as γ1 and γ2 . Geometrically this is clear
since both tangents are turned through the same angle arc f ±(z0). Alternatively, compute:

arc (( fγ1)±(t1))− arc (( fγ2)±(t2)) = arc f ±(z0) + arc γ ±1(t1) − arc f ±(z0)− arc γ ±2(t2)
= arc γ ±1(t1)− arc γ

±
2(t2)

DEFIN IT ION 13.4. A function f : D → C that preserves angles between paths at a
point z0 is conformal at z0.
If f is conformal at all z0 ∈ D we say it is conformal.

The terms conformal function, conformal map, conformal mapping, and conformal

transformation all mean the same thing. The fourth is traditional, the third is going out
of fashion, the second is convenient, and the first agrees with much current terminology.
One advantage of the fourth is that it focuses attention on how paths and other geometric
figures transform under f .
Observe that we have proved:

THEOREM 13.5. Let f : D → C be differentiable. The f is conformal at all z0 ∈ D

such that f ±(z0) ²= 0.

If f ±(z0) = 0 then f may not be conformal at z0 . For example, if f (z) = z2 then the
positive half of the real axis and the ‘positive’ half of the imaginary axis ({iy : y >
0}) meet at right angles. They transform into the positive half of the real axis and the
negative half of the real axis, with an angle of π .
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In fact, if z0 is a zero of f ± of order m then the angle between paths meeting at z0 is

multiplied by m+ 1 on transforming by f .

We can find out a little about how f affects lengths. If z0, z ∈ C and f is differentiable
at z0, then the ratio of the distances between f (z) and f (z0) and between z and z0 is

|f (z) − f (z0)|

|z − z0|
=

±
±
±
±

f (z)− f (z0)

z− z0

±
±
±
±

which tends to f ±(z0) as z → z0. So near z0 distances are approximately multiplied by
|f ±(z0)|.

Some special cases illustrate the previous analysis.

Example 13.6. f (z) = z3.

Here

u(x, y) + iv(x, y) = (x+ iy)3

= (x
3
− 3xy

2
) + i(3x

2
y− y

3
)

so that

u(x, y) = x3 − 3xy2

v(x, y) = 3x2y− y3

Consider the paths

γ1(t) = 1+ it

γ2(t) = t + i

These are respectively the lines x = 1, y = 1, which meet at right angles. The paths
±1 = fγ1 and ±2 = fγ2 are given by

±1(t) = (1− 3t2)+ i(3t − t3)

±2(t) = (t
3
− 3t)+ i(3t

2
− 1)

These curves are sketched in Figure 13.2. As expected, ±1 and ±2 meet at right angles
at (−2, 2).

Example 13.7. f (z) = 1/z.

This time

u(x, y) =
x

x2 + y2

v(x, y) =
−y

x2 + y2

If c > 0, the circle

γc(t) = ceit (t ∈ [0, 2π ]) (13.4)
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Figure 13.2 Transformed paths for Example 13.6 also meet at right angles.

Figure 13.3 Images of circles centred at the origin for Example 13.7.

transforms into

±c(t) = c−1e−it (t ∈ [0, 2π ]) (13.5)

Hence the system of concentric circles (13.4), as c varies, maps into the system of con-
centric circles (13.5), Figure 13.3. Further, the lines y = kx (k ∈ R) through the origin
are given by

δk(t) = t + kit

and transform to

²k(t) = (t + kit)−1 =
1

1+ k2

1

t
−

ik

1+ k2

1

t

which also represents lines through the origin. Now γc and δk all meet at right angles,
and so do their transforms ±c and ²k, Figure 13.4.

Example 13.8. f (z) = sin z.

Here

u(x, y) = sin x cosh y

v(x, y) = cos x sinhy
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Figure 13.4 Paths for Example 13.7 and their transforms all meet at right angles.

Figure 13.5 Example 13.8: Cartesian coordinate grid transforms into a system of confocal
hyperbolas and ellipses. Again all curves meet at right angles.

The lines x = c (c ∈ R) transform into confocal hyperbolas

u2

sin2 c
−

v2

cos2 c
= 1

and the lines y = d (d ∈ R) transform into confocal ellipses

u2

cosh2 d
+

v2

sinh2 d
= 1

as in Figure 13.5. The two systems of straight lines form a grid in Cartesian coordinates,
crossing at right angles. The hyperbolas and ellipses also meet at right angles, except at
points where f ±(z) = 0, namely f (z) = ³1. These are the common foci of the ellipses
and hyperbolas.
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13.3 Critical Points

Theorem 13.5 proves that a differentiable complex function is conformal at any point z0
such that f ±(z0) ²= 0. We now consider what happens when f ±(z0) = 0.

DEFIN IT ION 13.9. Let f be a differentiable complex function. A point z0 is a regular
point if f ±(z0) ²= 0. It is a critical point or singular point if f ±(z0) = 0.

Even though a complex function f need not be conformal near a critical point, the
local geometry still has considerable structure. To unravel what happens at a critical
point, consider the local Taylor expansion:

f (z0 + h) = f (z0)+ hf ±(z0)+ · · · + hnf (n)(z0)/n! + · · ·

This consists of two parts. The constant part is w0 = f (z0), which calculates where the
point z0 in the z-plane is mapped in the w-plane. The variable part

f (z0 + h) − f (z0) = hf ±(z0)+ · · · + hnf (n)(z0)/n! + · · ·

specifies how the function behaves near w0 = f (z0). In particular, the behaviour is
controlled by the first non-zero derivative f (n(z0). This motivates:

DEFIN IT ION 13.10. A differentiable function f : D → C is of order n at z0 ∈ D,

(where n ≥ 1) if f (n)(z0) ²= 0, and f (k)(z0) = 0 for 1 ≤ k < n.

A function of order 1 satisfies f ±(z0) ²= 0, and in general, the Taylor series at a fixed
point z0 for a function of order n has the form

f (z0 + h) = f (z0) + hnf (n)(z0)/n! + · · · (13.6)

Examples 13.11.
(i) f (z) = zn for integer n≥ 1 is of order n.
(ii) sin z = z− z3/3! + · · · is of order 1.
(iii) cos z− 1= z2/2! − z4/4! + · · · is of order 2.

Equation (13.6) indicates that the behaviour of a function near a critical point is given
by the order of the corresponding zero of the derivative. Indeed, a function of order
n ≥ 1 can be written as:

f (z0+ h) = f (z0)+ khn + higher order terms in h, where k = f (n)(z0)/n! ² = 0

This gives an approximation of practical value in applications:

f (z0 + h) − f (z0) ≈ khn for suitably small h (13.7)

The size of h required to give a decent approximation depends on the context. As z

moves from z0−h to z0+h, the difference f (z)− f (z0) in (13.7) changes approximately

from k(−h)n to khn. The behaviour depends on whether n is even or odd. For n odd,
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it moves from −khn to khn, passing through zero, and for n even it travels from khn to

zero, then back again to khn .

A more precise sense of the behaviour can be obtained by writing h in polar
coordinates, h = reiθ . For suitably small h, (13.7) gives

f (z0 + reiθ )− f (z0) = krneinθ + · · · (k = |f (n)(z0)|/n!)

so

|f (z0 + reiθ )− f (z0)| ≈ krn

and

arc ( f (z0 + reiθ )− f (z0)) ≈ nθ + α where α = arc ( f (n)(z0))

For small values of h, f transforms a tiny portion of the z-plane near z0 to the w-plane
near w0 = f (z0), scaling r to krn and rotating the original angle θ to nθ +α, Figure 13.6.
Rotating the line from z0 to z0 + h in the z-plane through a further angle φ rotates the

corresponding line in the w-plane to n(θ + φ) + α , so the angle between the trans-
formed lines in the w-plane is nφ. The sector of the circle radius r, angle φ in the
z-plane is scaled to a sector in the w-plane, radius krn , with angle expanded to nφ ,

Figure 13.7.
For n = 1 the point is regular, and f is conformal. For n > 1, the function f transforms

z0 to w0 = f (z0), and a point distance r from z0 is scaled approximately to krn from w0

in the w-plane, while the angle between two paths through z0 changes from φ in the
z-plane to nφ in the w-plane.

z-plane

w-plane

for suitably

small h

f

scale

to kr n

rotate to

nθ+α

z0

z0 +h

w0

f(z0 +h)

θ

r

Figure 13.6 The tangent map translating, rotating and scaling from z0 to w0.

Figure 13.7 Transforming a sector of a circle centre z0, radius r.
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13.4 Möbius Maps

For fixed a, b, c, d ∈ C, the function

f (z) =
az+ b

cz+ d
(ad − bc ²= 0)

is called a Möbius map or bilinear map. (Again, ‘map’ can be replaced by ‘function’,
‘mapping’, or ‘transformation’.) These maps have a number of important properties, and
we discuss some of them.

First, note that f is differentiable for z ²= −d/c, and

f ±(z) =
ad − bc

(cz+ d)2
²= 0

since ad − bc ²= 0, again provided z ²= −d/c. Hence f is conformal throughout the
domain C \ {−d/c} on which it is defined.
Now suppose that

f (z) =
Az + B

Cz +D
(AD − BC ²= 0)

is a second Möbius map. Then the composite

gf (z) =
(Aa + Bc)z+ (Ab+ Bd)

(Ca+Dc)z+ (Cb+Dd)

is another Möbius map, because

(Aa+ Bc)(Cb+Dd) − (Ab+ Bd)(Ca+Dc) = (AD− BC)(ad − bc) ²= 0

So composing two Möbius maps always gives a Möbius map.

13.4.1 Möbius Maps Preserve Circles

A remarkable, and useful, property of such maps is that they transform circles (or
straight lines) into circles (or straight lines). To save breath, let us agree that in this
section a ‘circle’ may be either a circle or a straight line. (We can think of a straight
line as a circle of infinite radius, remembering that∞ is a fairly respectable concept in
complex analysis.)
Suppose p, q ∈ C with p ²= q, and let k > 0. The equation

|z− p|

|z− q|
= k (13.8)

is satisfied by those points whose distances from p and q are in the ratio k. It is well
known in Euclidean geometry, and can easily be checked using coordinates, that if k ²= 1

such points lie on a circle, and if k = 1 they lie on a straight line.
Here is a quick proof. By scaling and a rigid motion, we can choose coordinates in

the plane so that p = (0, 0) and q = (1, 0). If (x, y) is distance kd from p, and distance d
from q, then

²
x2 + y2 = k

²
(x− 1)2 + y2
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Hence

x
2
+ y

2
= k

2
(x

2
+ y

2
− 2x+ 1)

which implies

³
x−

k2

k2 − 1

´2

+ y
2
+

k2

k2 − 1
−

³
k2

k2 − 1

´2

= 0

which is the equation of a circle.
If we put

w = f (z) =
az+ b

cz+ d
(ad − bc ²= 0)

it is easy to verify that

z =
−dw+ b

cw − a

Now (13.8) takes the form
±±±±±

az+b
cz+d

− p

az+b
cz+d − q

±±±±± = k

which simplifies to
|w − P|

|w −Q|
= K (13.9)

where

P = (b+ pa)/(d+ pc)

Q = (b+ qa)/(d+ qc)

K = k|d + qc|/|d+ pc|

Hence (13.9) also represents a circle. This proves that the Möbius map f transforms

circles into circles.

13.4.2 Classification of Möbius Maps

The above calculation, while it verifies the assertion, is not as instructive as we might

hope, and the following approach has its advantages. We consider several special types
of Möbius map that have especially simple forms, which can easily be seen to trans-
form circles into circles. Then we show that a general Möbius map can be obtained by
composing these types.
It is perhaps not so surprising that this approach works, in view of the composition

property of Möbius maps. The decomposition can be seen as analogous to the well-
known fact that any rigid motion of the Euclidean plane can be obtained by composing

a translation, a rotation, and a reflection.
We begin with the special types.
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Translation: w = z + k (k ∈ C). This corresponds geometrically to moving points
re k to the right and im k upwards, and clearly preserves the shape of geometric

figures, in particular circles.
Rotation:w = eiθ z (θ ∈ R). All points rotate round the origin through angle θ . Again

this preserves the shape of geometric figures.
Magnification: w = hz (h > 0). This produces a change of scale. If h < 1 it shrinks

rather than magnifies, but such pedantry is irrelevant and we still use the term
‘magnification’. It therefore maps geometric figures to similar geometric figures.

Inversion: w = 1/z. Devotees of ‘inversive geometry’, now largely out of fashion,
will recognise the corresponding ‘geometric inversion’, which is well known to
preserve circles. However, circles can map to straight lines, or straight lines to
circles. The rest of us can check this by a coordinate calculation similar to the one
above.

We can now state:

THEOREM 13.12. Every Möbius map can be obtained by composing a translation, an
inversion, a magnification, a rotation, and another translation.

Proof. Suppose that a,b, c,d ∈ C and ad − bc ²= 0, where c ²= 0. Define

t1(z) = z+ d/c (translation)

j(z) = 1/z (inversion)

m(z) =

±
±
±
±

ad − bc

c2

±
±
±
±
z (magnification)

r(z) =
(bc− ad)|c|2

|ad − bc|c2
z (rotation)

t2(z) = z+ a/c (translation)

It is routine to verify that

(t2rmjt1)(z) =
az+ b

cz+ d

If c = 0 define

t1(z) = z+ b/a (translation

m(z) =
±
±
±

a

d

±
±
± z (magnification)

r(z) =
a

d

±
±
±
±

d

a

±
±
±
±
z (rotation)

noting that ad − bc ²= 0 implies ad ²= 0 since c = 0, hence a ²= 0, d ²= 0. Now

(rmt1)(z) =
az+ b

cz+ d

COROLLARY 13.13. Every Möbius map transforms circles into circles.
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There are other functions f : C → C that preserve circularity, the most obvi-
ous being complex conjugation (which is not differentiable). A theorem of Constantin
Carathéodory asserts that every such function is either a Möbius map, or a Möbius

map composed with conjugation. No differentiability assumptions are needed for this
theorem. We do not prove it here.

13.4.3 Extension of Möbius Maps to the Riemann Sphere

There is a natural way to extend Möbius maps to the Riemann sphere by examining their
behaviour as z→ ∞.

PROPOSIT ION 13.14. Any Möbius map can be extended uniquely to the Riemann
sphere so that it is differentiable at every point.

Proof. By continuity we can find this extension by letting z → ∞, but we must then
verify differentiability. If

f (z) =
az+ b

cz + d
(ad − bc ²= 0)

then letting z→ ∞ we must define

f (∞) =

µ a

c
if c ²= 0

∞ if c = 0

Differentiability at∞ is an easy exercise.

When extended in this manner, f is a bijection from C ∪ {∞} to itself. If we identify
C∪{∞}with the Riemann sphere S2 , then circles inC remain circles on S2 , and straight
lines in C also become circles on S2.
It is instructive to work out the effect of the basic types of Möbius map on S2 . We

omit the details.

13.5 Potential Theory

We now turn – briefly – to classical applications of complex analysis. These were instru-
mental in convincing mathematicians that the subject was worth taking seriously, before
the basic concepts had been made rigorous. We discuss potential theory, a general area
of mathematical physics with applications to gravitation electrostatics, magnetism, and
fluid flow.

13.5.1 Laplace’s Equation

The two-dimensional Laplace equation

∂2φ

∂x2
+
∂2φ

∂ y2
= 0
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for a function φ(x, y) is important in potential theory, with applications in particular
to fluid dynamics. It is closely connected with complex function theory, as we now
demonstrate. Let f : D →C be differentiable, with z = x+ iy, and write

f (z) = u(x, y) + iv(x, y)

as usual. Then

f ±(z) =
∂u

∂ x
+ i

∂v

∂x
=
∂v

∂y
− i

∂u

∂y

as in Section 4.2. By Theorem 10.3 f ±± exists throughout D. If we let f ±(z) = U+ iV then

the Cauchy–Riemann Equations of Theorem 4.12 state that

∂U

∂x
=
∂V

∂y

∂V

∂x
= −∂U

∂y

Therefore

U =
∂u

∂x
=
∂ v

∂ y
V =

∂ v

∂ x
= −

∂u

∂y

so we get
∂2u

∂ x2
=

∂

∂x

³
∂u

∂x

´
=
∂U

∂x
=
∂V

∂ y
= −

∂

∂y

³
∂u

∂y

´
= −

∂ 2φ

∂y2

Therefore u(x, y) satisfies the Laplace equation. Similarly, so does v(x, y).
For instance, consider f (z) = zez . Then

u(x, y) = xex cos y− yex sin y

v(x, y) = ye
x
cos y+ xe

x
sin y

and it may be verified directly that these functions satisfy Laplace’s Equation.
Solutions of Laplace’s equation are called harmonic or potential functions. Pairs of

functions u, v obtained from a differentiable function by the above method are called
harmonic conjugates.
The lines u = constant, v = constant, are orthogonal (mutually perpendicular) in the

(u, v)-plane, so by conformality the curves

u(x, y) = constant

v(x, y) = constant

are orthogonal in the (x, y)-plane. In potential theory, if u is harmonic, the lines u(x, y) =
constant are called equipotential lines, and the set of orthogonal curves v(x, y) = con-

stant are called streamlines. In the case when Laplace’s equation describes fluid flow,
streamlines are the paths along which the fluid flows. If we are given u in a domain D

and wish to find the streamlines given by v, we can often use complex integration. For a
fixed point z0 ∈ D, and any z1 ∈ D, we have

f (z1) =

¶ z1

z0

f
±
(z)dz =

¶ z1

z0

³
∂u

∂x
− i

∂u

∂ y

´
dz
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For example, if u(x, y) = x2 − y2 , which is harmonic, then picking z0 = 0 for
convenience we have

f (z1) =

¶ z1

0
(2x+ 2iy)dz =

¶ z1

0
2zdz = z

2
1

Hence f (x + iy) = (x + iy)2 = (x2 − y2) + i(2xy). So the streamlines have equations
2xy = constant, or equivalently

xy= constant

Often, as in this case, we can guesswhat f , hence v(x, y), ought to be – a process dignified
by the term ‘inspection’.

13.5.2 Design of Aerofoils

Conformal maps and complex function theory played a part in the design of aircraft
in the early days of aviation (and, in a more sophisticated way, still do, although most

modelling is now done using the numerical methods of computational fluid dynamics).

In particular, the transformation from the z-plane to thew-plane given by

w − 2

w + 2
=

³
z− 1

z+ 1

´2

maps a circle in the z-plane, passing through −1 and containing +1 in its interior, into
a ‘bent teardrop’ shape as in Figure 13.8 that resembles a cross-section of an aircraft’s
wing. This is known as a Joukowski aerofoil, defined by a Joukowski transformation,
after Nikolai Zhukovsky, who discovered the transformation.

Figure 13.8 Left: Flow past circle (with appropriate circulation added). Right: Circle transformed

to Joukowski aerofoil, with transformed flow.

It is used as follows. It is quite easy to solve the Laplace equation and find streamlines

for the flow of a fluid round a circular disc. Now apply the Joukowski transformation:

the disc maps to an aerofoil, and the streamlines round the disc map to the streamlines

round the aerofoil. In order to make the flow behave in a sensible physical manner at the
sharp edge of the aerofoil, the flow past the circle is modified by adding a ‘circulation’
term that flows round the circle. From this we can calculate properties of the flow; in
particular, the amount of ‘lift’ imparted to the aircraft. More subtle transformations, such
as the Karmann–Trefftz transform
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w − n

w + n
=
³
z− 1

z+ 1

´n

give more accurate information.

13.6 Exercises

1. Sketch the image of the set D = {z ∈ C : re z > 0, im z > 0, |z| < 1} under
the conformal map f (z) = 1/z. Draw the images of the lines in D parallel to the
coordinate axes.

2. Show that the map

f (z) =
√
1+ k2

b
exp

·
−i

·π
2
+ tan−1 k

¸
z

¸

transforms the strip between the lines y = kx, y = kx+ b into that between x = 0

and x = 1.

3. Find a conformal map f of the annulus 2 < |z| < 5 on to the annulus 4 < |z| < 10,

such that f (−5) = 10. (These points lie on the boundary so f must also be defined
there.) Find another with f (5) = 4.

4. With a suitable choice of the square root, show that

f (z) =
√
z − p− i

√
p

maps the exterior of the parabola y2 = 4px (p > 0) onto the right-hand half-plane
x > 0, Figure 13.9.

5. Find a conformal map that sends the interior of the right-hand branch of the
hyperbola

x
2 − y

2 = λ
2

to the upper half-plane y > 0, Figure 13.10. (Hint: what is re z2?)
6. Show that the semicircle |z| < 1, re z > 0 is mapped by

f (z) = z2 + z

Figure 13.9 Conformal map of interior of parabola to half-plane.
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Figure 13.10 Conformal map of interior of hyperbola to half-plane.

Figure 13.11 Conformal map for Exercise 6.

Figure 13.12 Region for Exercise 7.

to the region bounded by the parabola x = −y2 and the curve whose equation in
polar coordinates is

r = 2 cos(θ/3) (|θ | ≤ 3π/4)

See Figure 13.11.
7. Show that for suitably defined square roots, when a,b, c > 0,

f (z) =

¹ √
z2 + c2 +

√
a2 + c2

√
bz2 + c2 −

√
z2 + c2

maps the plane with the segments between −a, and b, and −ic and ic removed, to
the upper half-plane. See Figure 13.12.
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–1 + i

–1 – i 1 – i

–1 1

1

1 + ii

–i

Figure 13.13 Left: Region for Exercise 8. Right: Exterior of unit circle.

Figure 13.14 Region for Exercise 9.

8. Show that for suitably defined square roots,

f (z) = 1º
2+

√
5

³²º
z4 + 4+ 2+

²º
z4 + 4−

√
5

´

maps Figure 13.13 (left) to the exterior of the unit circle, Figure 13.13 (right).
9. Find a conformal map from Figure 13.14 to the upper half-plane. (Hint: compare

Exercise 7.)
10. Show that

f (z) =
»
cosπ z− coshπh

1+ cosπ z

maps Figure 13.15 to the upper half-plane.
11. Find a conformal map from Figure 13.16 to the upper half-plane.
12. Find the Möbius map that sends −1,∞, i respectively to:

(i) i, 1, 1 + i

(ii) ∞, i, 1
(iii) 0,∞, 1

13. Find the general form of a Möbius map that:
(i) Transforms the upper half-plane to itself.
(ii) Transforms the upper half-plane to the lower half-plane.
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Figure 13.15 Region for Exercise 10.

Figure 13.16 Region for Exercise 11.

(iii) Transforms the upper half-plane to the right half-plane.
(iv) Preserves the unit circle.
(v) Preserves the coordinate axes.
(vi) Transforms the upper half-plane to the interior of the unit circle.

14. Invariance of Cross Ratio. The cross ratio of four complex numbers z1, z2 , z3 , z4 is

(z1− z2)(z3 − z4)

(z1− z4)(z3 − z2)

Let µ(z) =
az+ b

cz+ d
be a Möbius map with ad − bc ²= 0, and let wj = µ(zj) for

j = 1, 2, 3, 4. Prove that

(w1 − w2)(w3 − w4)

(w1 − w4)(w3 − w2)
=

(z1 − z2)(z3 − z4)

(z1 − z4)(z3 − z2)

(Hint: first work out how w1 − w2 relates to z1 − z2 .)

15. Let f be a Möbius map. A fixed point of f is a point z such that f (z) = z.

Prove that f has at most two distinct fixed points, including∞.

If f has a unique fixed point (including∞) it is said to be parabolic. Prove it can
then be written in the form

1

f (z) − z0
=

1

z − z0
+ h (z0 ²= ∞)
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or

f (z) = z + h (a translation)

If f has two distinct fixed points z1 , z2 , show that it can be written in the form
f (z) − z1

f (z) − z2
= k

z − z1

z − z2
(z1, z2 ²= ∞)

or

f (z)− z1 = k(z − z1) (z2 = ∞)

Such a map is said to be hyperbolic if k > 0, elliptic if k = eiα (α ²= 0), and
loxodromic if k = aeiα , where a ²= 1 is real and α ²= 0.

16. With the definitions of Exercise 14, prove the following:
(i) Any Möbius map (az+ b)/(cz+ d) is equal to one for which ad − bc = 1.

(ii) Having ensured this, if a + d is real then the map is elliptic if |a + d| < 2,

hyperbolic if |a+ d| > 2, and loxodromic if |a+ d| = 2.

(iii) If a+ d is not real, the transformation is loxodromic.

17. Show that
u(x, y) = x

3
− 3xy

2

is harmonic. Find a harmonic function v : R2 → R such that

f (x + iy) = u(x, y)+ iv(x, y)

is a differentiable complex function. Prove that v is unique up to the addition of a
real constant.

18. For f (z) = 1/z, write f (z) = u(x, y) + iv(x, y). Sketch the level curves u(x, y) =
constant, v(x, y) = constant. If a level curve of u meets a level curve of v, what is
the angle between them? Is there an easy way to see this, and if so, what is it?

19. Find the most general cubic polynomial

u(x, y) = ax3 + bx2y+ cxy2 + dy3 (a, b, c,d ∈ R)

that is harmonic. Find a differentiable function with u as its real part.
20. Verify that the Joukowski transformation does, as claims above, give rise to an

aerofoil shape. Look up pages 131–134 of Kyrala [12] and see how to compute

streamlines round it. A more modern book is Anderson [1]. The NASA applet at
www.grc.nasa.gov/WWW/K-12/airplane/map.html is also worth investigating.
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When Weierstrass started his programme to rigorise complex analysis he based it on
power series. Because these have well-behaved convergence properties, and can be
differentiated or integrated term by term, they provide a tool of great technical value.
However, this tool has limitations, which we illustrate in the final section of this chap-
ter: many important functions cannot be represented by a single power series – mainly

because power series converge on discs.

This limitation can be overcome by the method of ‘analytic continuation’, which lets
us extend the domain of a complex function, subject to suitable conditions. It turns out
that such an extension is not always unique, and the problem of describing the different
possibilities and how they are related leads to a remarkable geometric concept, known
as a ‘Riemann surface’ after its inventor. In this chapter we discuss these topics and
related ones. Here we use the term ‘analytic’ rather than ‘differentiable’, to emphasise

the power series viewpoint – but you should remember that in the complex case these
terms are synonymous.

14.1 The Limitations of Power Series

We illustrate the problem for the function

f (z) =
1

1− z2

It would be possible to use a simpler example, such as 1/z, but it is more appropriate
to work with something a little less special, where the general problem is more sharply
defined

This function is analytic in C \ {−1, 1}, and has simple poles at−1 and 1. Its power
series expansion about z0 = 0 is

1+ z
2
+ z

4
+ z

6
+ · · · (14.1)

which converges for |z| < 1 but diverges for |z| > 1. Thus if we require functions to be
defined on domains, the series (14.1) at best represents f on an open disc

D1 = {z ∈ C : |z| < 1}

Thus (14.1) tells us about a small part of f (directly, at least, although it has useful
indirect implications, as we shall see).



290 Analytic Continuation

We can begin to get round this problem by choosing a different z0, for example z0 = i.

To find the Taylor series for f (z) around z0 = i it helps to rewrite f in the form

f (z) = 1

2

±
1

1+ z
+ 1

1− z

²

Let w = z− i, so that z = w + i. Then

f (z) =
1

2

±
1

1+ w + i
+

1

1− w− i

²

= 1

2

³
1

1+ i

±
1+ w

1+ i

²−1
+ 1

1− i

±
1+ w

1− i

²−1´

=
1

2(1+ i)

∞µ

n=0
(−1)n

±
w

1+ i

²n

+
1

2(1 − i)

∞µ

n=0

±
w

1− i

²n

=
∞µ

n=0

1

2

¶
1

1+ i

±
−1
1+ i

²n

+
1

1− i

±
1

1− i

²n·
(z − i)n (14.2)

The series (14.2) has radius of convergence
√
2, because that is the distance from z0 = i

to the nearest pole of f , so it converges on

D2 = {z ∈ C : |z− i| <
√
2}

Figure 14.1 shows that (14.2) converges for some values of z for which (14.1) converges,
and conversely. Thus not only do (14.1) and (14.2) represent small parts of f (namely its
restrictions to D1 ,D2) but they represent different parts.
Similarly if we take z0 = 2 we obtain a third series

f (z) =
∞µ

n=0

¸
−1

2 (−1)
n + 1

6(−
1
3)

n
¹
(z − 2)

n
(14.3)

convergent on the disc
D3 = {z ∈ C : |z− 2| < 1}

Figure 14.1 Discs of convergence of various local power series for f . Shading shows intersections
of discs.
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which represent yet another part of f . And something of this kind happens for any choice
of z0: the Taylor series

f (z) =

∞µ

n=0

an(z− z0)
n (14.4)

converges for

|z− z0| < K = min(|z0 − 1|, |z0 + 1|)

by Theorem 10.3. Thus no single choice of z0 gives a power series expansion of f (z)
valid for all z ∈ C \ {−1, 1}, even though f is analytic on this domain. (You should
check that Laurent series do not improve the situation.)
This problem is more a limitation of a tool – power series – than a defect of ana-

lytic functions. It is no fault of f (z) that our clumsy attempt to represent it using power
series has apparently failed. The fact that a power series converges on a disc, so often a
help, becomes a hindrance when we look at functions defined on domains that are not
discs.

We could give up at this stage and ignore power series, but that would hardly be
enterprising: it is a cardinal principle in mathematics not to throw away a good idea
just because it does not work. If a single power series is no good, why not try a whole
collection of power series? This solves part of the problem. We can certainly find, for
each z0 ∈ C \ {−1, 1}, a power series expansion (14.4) around z0 that converges to f (z)
for all z near z0 . Thus using several power series gives information about the whole of f .
However, it also creates another, more serious, problem. In the discussion so far

we started with f and worked out the power series. Weierstrass needed to proceed in
the opposite direction: use power series to define f (z). In the example above we know
that the series (14.1), (14.2), and (14.3) represent the same function f , because that is
how they are constructed. If we are given two power series expansions around differ-
ent points, how can we tell whether they represent the same analytic function, without
knowing a priori what that function is? This is the central problem with Weierstrass’s

approach.

14.2 Comparing Power Series

We wish to compare two power series

p(z) =

∞µ

n=0

pn(z − z0)
n

q(z) =

∞µ

n=0

qn(z − z1)
n

around z0 , z1 respectively, convergent on open discs P,Q. Everything is easy if P and Q

overlap (that is, P ∩ Q ±= ∅), as is the case for (14.1) and (14.2), or (14.2) and (14.3),
see Figure 14.2. In this case we can prove:
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Figure 14.2 Overlapping discs of convergence.

Figure 14.3 With more singularities, chains of discs may have to be longer.

LEMMA 14.1. Let f ,g be analytic on a domain D. Suppose that P and Q are open sets
and ∅ ± = P ∩ Q ⊆ D. Suppose that p(z) = q(z) for all z ∈ P ∩ Q, and f , g are analytic
functions defined on D such that f (z) = p(z) for z ∈ P and g(z) = q(z) for z ∈ Q. Then
f (z) = g(z) for all z ∈ D.

Proof. For z in the non-empty set P ∩ Q,

f (z) = p(z) = q(z) = g(z)

Now Theorem 10.16 implies that f (z) = g(z) for all z ∈ D.

In this sense, p and q represent the same analytic function. Obviously the converse
also applies: if p and q represent the same analytic function on D then they must agree
on the overlap.
The existence of a non-empty overlap allows direct comparison of the two power

series: all we have to do is look at their values. But what if the discs of convergence do
not overlap, as for (14.1) and (14.3)? The answer is to construct a chain of overlapping
discs from one to the other, on each of which the power series converges, and such
that the power series agree on all overlaps. Thus D1 and D2 overlap, and (14.1) agrees
with (14.2) onD1∩D2; andD2 andD3 overlap, and (14.2) agrees with (14.3) on D2∩D3 .

It is fairly clear that for f (z) = 1/(1−z2) we can get from D1 to any point z0 ±= ²1 by a
chain of at most three discs (two unless z0 is real and |z0 > 1|). For a more complicated

function with more poles (or other singularities) we may need more discs in a chain,
because the discs have to ‘push between’ the singularities, see Figure 14.3. In a sense
this is the reason for the limitation of power series: discs are too blunt an instrument to
penetrate beyond the singularities into more distant territory.
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When we formalise these ideas, as in the next section, it becomes clear that the restric-
tion to power series is inessential. This is often the way in mathematics: the solution to a
special problem turns out to apply in a much more general setting. The special problem
plays the useful role of a psychological springboard, hurling our thoughts into higher
realms.

14.3 Analytic Continuation

The simplest type of analytic continuation is direct analytic continuation, extending a
function from one domain to an overlapping domain. Repeating this process we get
indirect analytic continuation. We consider these in turn.

14.3.1 Direct Analytic Continuation

DEFIN IT ION 14.2. If f1 is analytic on a domain D1 and f2 is analytic on a domain D2 ,

where D1 ∩ D2 ±= ∅ and f1(z) = f2(z) for all z ∈ D1 ∩ D2, then f2 is a direct analytic
continuation of f1 to the domain D2 , see Figure 14.4.

Such an f2 must be unique by Lemma 14.1.
As a simpler example than that in the previous section, take

f1(z) =

∞µ

n=0

zn (|z| < 1)

f2(z) = 1/(1− z) (z ∈ C \ {1})

Then f2 is a direct analytic continuation of f1. Whereas f1 is defined only in the interior
of the unit disc, f2 is defined on the whole of C except at 1.
Before going on to the general case, a series of overlapping domains, it is worth

dealing with another phenomenon. Sometimes D1 may be such that f1 has no direct
continuation to any D2 not contained in D1 . In this case the boundary of D1 is called
a natural boundary for f1. Now the limitation does not stem from our choice of tools,
but from intrinsic properties of f1: it so happens that D1 is the end of the line as far as
analytic continuation of f1 is concerned.
The standard example of this phenomenon is

Figure 14.4 Direct analytic continuation.
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f (z) =

∞µ

n=0

zn! (14.5)

which converges (so is analytic) for |z| < 1. We prove:

PROPOSIT ION 14.3. The unit circle S = {z ∈ C : |z| = 1} is a natural boundary for
the function f defined by (14.5).

Proof. Let z0 = eip/q for p,q,∈ Z, q≥ 1. Then zn!0 = 1 for all n ≥ q. We show first that
as z→ z0 then f (z) → ∞. Let z = rz0 where 0 < r < 1. Then

f (z) =

∞µ

n=0

(rz0)
n!

= (1+ rz0 + · · · + r(q−1)!z
(q−1)!
0 ) +

∞µ

n=q

rn!

= g(r)+ h(r), say.

Note that h(r) has the above form because zn!0 = 1 for all n ≥ q. For any fixed integer
N ≥ 0,

q+Nµ

n=q

r
n!
→ N + 1 as r → 1

So for some ε > 0, if 1− ε < r < 1, then
q+Nµ

n=q

r
n!
≥

1
2N

Then

h(r) =

∞µ

n=q

r
n!
≥

q+Nµ

n=q

r
n!
≥

1
2N

so that h(r)→ ∞ as r → 1, and h(r)→ ∞ as z→ z0. On the other hand,

g(z) = 1+ z0 + · · · + +r(q−1)!z(q−1)!0 as z→ z0

Therefore

lim
z→z0

f (z) = ∞ (14.6)

Now, suppose that F is a direct analytic continuation of f to a domain D2 not contained
in D1 . Then ∂D1 ∩ D2 is open in ∂D1 = S, so it contains some point z0 = eip/q for

p,q,∈ Z, q ≥ 1 since such points are clearly dense on the unit circle. There is a small

disc Dε round z0 such that Dε ⊆ D2 . Now for 1 > r > 1− ε we have rz0 ∈ Dε , so that

F(rz0) = f (rz0)

As r→ 1,

F(rz0)→ ∞

by (14.6). But F is analytic in D2 , so
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Figure 14.5 Sequence of points tending to z0 .

Figure 14.6 Sequence of overlapping domains.

F(rz0) → F(z0)

as r → 1, by continuity. This is a contradiction; therefore no direct analytic continuation
of f to D2, not contained in D1, is possible.

Figure 14.5 illustrates the geometry of this proof. Informally, the point is that the
singularities eip/q are so close together that there is no room to squeeze a disc between
them, onto which f might be analytically continued.

14.3.2 Indirect Analytic Continuation

We now return to the question of performing a sequence of direct analytic continuations,
one after the other.

DEFIN IT ION 14.4. Let D1, . . . ,Dn be domains such that

Dr ∩Dr+1 ±= ∅ (r = 1, . . . ,n− 1)

as in Figure 14.6. If ( fr) is a sequence of analytic functions defined on Dr such that
fr+1 is a direct analytic continuation of fr (r = 1, . . . ,n − 1), then fn is an analytic

continuation of f1 from D1 toDn .

An analytic continuation that is not direct is an indirect analytic continuation.

Unlike the direct case, we may obtain different results by using different sequences of
domains, Figure 14.7. Indeed, we can even have a sequence of overlapping domains for
which Dn = D1 , but fn ±= f1, so that on returning to our starting point we end up with
a different function from the original one. We illustrate this possibility by an example

in the next section. But first, we apply the above ideas to define a broader concept of an
analytic function.
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Figure 14.7 Sequences of overlapping domains that may lead to different analytic continuations.

14.3.3 Complete Analytic Functions

If f is analytic in a domain D we call the pair ( f ,D) a function element. We define a
relation∼ on the set of all function elements by

( f1 ,D1) ∼ ( f2,D2)

if f2 is an analytic continuation of f1 from D1 to D2. Since indirect continuations are
allowed, it follows easily that ∼ is an equivalence relation. A complete analytic function
is an equivalence class under ∼ of function elements.

In other words, a complete analytic function in the new sense is an analytic function in
the old sense, together with all of its analytic continuations. It is clearly more convenient
to have the analytic continuations ‘built in’ than to have to fit them together as the
occasion warrants.
If there exist function elements ( f1,D1 and ( f2 ,D2) of the complete analytic function

F such that for some z ∈ D1 ∩ D2 we have f1(z) ±= f2(z), we say that F is multiform. If
not, then F is uniform. All the examples considered so far in this chapter are uniform,

but we give examples of multiform functions in the next section. A multiform F is a
formal version of the classical idea of a ‘multivalued function’, with the advantage that
it is broken down into pieces on each of which it is a genuine single-valued function.
The multiformity arises because of how these pieces fit together. A geometric approach
to this leads to the concept of a Riemann surface, discussed informally in Section 14.5.

14.4 Multiform Functions

A simple instance of a multiform function is

f (z) =
√
z

If z = reiθ then we can choose for√z either

√
reiθ/2 or

√
reiθ/2+π
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where
√
r is real and positive. With the old concept of an analytic function, we must

choose one of these arbitrarily, and then f (z) is analytic only if we make a cut in the
complex plane. From the present viewpoint, we can do better. We spell the method out
in considerable detail – just this once.
We introduce four domains:

H1 = {z ∈ C : re z > 0}
H2 = {z ∈ C : im z > 0}
H3 = {z ∈ C : re z < 0}
H4 = {z ∈ C : im z < 0}

which are the open half-planes to the right, top, left, and bottom of the complex plane.
Let z = reiθ where r > 0, θ ∈ [−π ,π ]. Define

f1(z) =
√
reiθ/2 for z ∈ D1 = H1

f2(z) =
√
reiθ/2 for z ∈ D2 = H2

f3(z) =
º √

reiθ/2√
rei(θ/2+π)

for

for

z ∈ D3 = H3 , im z ≥ 0
z ∈ D3 = H3 , im z < 0

f4(z) =
√
rei(θ/2+π) for z ∈ D4 = H4

f5(z) =
√
rei(θ/2+π) for z ∈ D5 = H1

f6(z) =
√
rei(θ/2+π) for z ∈ D6 = H2

f7(z) =
º √

rei(θ/2+π)√
reiθ/2

for

for

z ∈ D7 = H3 , im z ≥ 0
z ∈ D7 = H3 , im z < 0

f8(z) =
√
reiθ/2 for z ∈ D8 = H4

Each of these eight functions is analytic in its domain of definition; this is why for f3
and f7 we have to change our choice of √z as we cross the imaginary axis, because
otherwise our choice −π < θ ≤ π would introduce a discontinuity. Further, fr+1 is a
direct analytic continuation of fr (r = 1, . . . , 7) and f1 is a direct analytic continuation
of f8. For each z ∈ C \ {0} the values fr(z), where defined, are one or other of the two
possible square roots. Further, for each r, the function fr(z) takes one of the two values
and fr+4 takes the other value, interpreting r+ 4 modulo 8 (and replacing 0 by 8).
Thus we have defined a multiform function, taking two values at each z ±= 0. Going

round the origin once, fromD1 to D2 to D3 to D4 toD5 = D1, we reach a different value
of f (z) from the original one. However, in this case, going round a second time returns
us to the original value. This last effect is a special feature of √z, as the next example
shows.

14.4.1 The Logarithm as a Multiform Function

Example 14.5. An immensely important multiform function is

f (z) = log z

Its multiformity was Euler’s great discovery, arising from the Bernoulli–Leibniz
controversy mentioned in Chapter 0. In terms of the present discussion, we introduce
domains
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D4k+r = Hr (k ∈ Z, r = 1, 2, 3, 4)

with the Hr as above. To avoid the kind of two-piece definition that occurred for f3 and

f7 above, we proceed as follows. For z ∈ Dn and z = reiθ where

n− 2

2
π < θ ≤

n

2
π

we define
fn(z) = log r+ iθ

Then fn is analytic on Dn. On D1 ,

f1(z) = Log z

the principal value of the logarithm. On D5,

f5(z) = Log z + 2πi

On D4k+1,

f4k+1(z) = Log z+ 2kπ i

It is not hard to check that fs+1 is a direct analytic continuation of fs from Ds+1 toDs for

all s ∈ Z. For each r = 1, 2, 3, 4 and k ∈ Z the values of f4k+r(z) (z ∈ Hr) give all the
infinitely many possible values

log |z| + (2kπ + arg z)i

of the logarithm.

14.4.2 Singularities

We can now give a general definition of a singularity. If no analytic continuation of f can
be defined at a point z0 then we say that z0 is a singularity of the corresponding com-

plete analytic function. We have met several kinds of singularity before: poles, isolated
essential singularities, natural boundaries. Removable singularities are not singularities
at all according to the new definition, because ‘filling in’ the missing point is a form of
analytic continuation.
For

√
z and log z we encounter a new kind of singularity, called a branch point.

Analytic continuation round such a point leads to a change in value. Notice that for
f (z) = √z there is even a natural definition of f (z) at the branch point itself, namely 0,
but f is not analytic there. This is not the case for the logarithm.

Multiform functions make an appearance in contour integration whenever different
choices of path from z0 to z1 leads to different values of the integral

F(z1) =
» z1

z0

f (z) dz

(as may occur, for instance, if f has a pole in the region between the two paths). Hence
quite nice singularities of f , such as poles, give rise to much nastier singularities of F,
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namely branch points. This can occur even when f is uniform: for instance, 1/z is uni-
form but its integral log z is multiform, and the pole of f at 0 has become a branch point
of F.

14.5 Riemann Surfaces

Riemann was a great geometer, and he invented a geometric way to envisage multiform

functions, which is much more intuitive than an equivalence class of function elements.

His idea is to replace C by a more complicated ‘Riemann surface’. Roughly speaking,
the idea is to ‘glue together’ the domains of function elements at overlaps where the
functions agree. We sketch this idea in general later; our immediate aim is to describe a
few key examples.

14.5.1 Riemann Surface for the Logarithm

In the case of the logarithm we can describe the construction informally in the following
terms, which should not be subjected to too deep scrutiny of a logic-chopping kind. We

are not attempting a rigorous definition at this point; the informal description, though it
may sound far-fetched, is in fact capable of being given a rigorous rendering, described
at the end of this section.
Consider a collection of copies Ck of C, one for each k ∈ Z. Slit each Ck along the

negative real axis from 0 to −∞. For each k join the top left-hand quadrant of Ck to

the bottom left-hand quadrant of Ck+1 along the slit. The resulting surface, Figure 14.8,
resembles a spiral staircase or a concertina, with the planes stacked on top of each other
in order relative to k, and with a continuous spiral path from any Ck to any other Cl

going up the ‘steps’ where the slits were joined. These planes Ck are the sheets of the
Riemann surface, and it is convenient to imagine the whole collection to be stacked on
top of C as shown in Figure 14.8.
We define the logarithm for points on the Riemann surface by

log |ẑ| + (2kπ + arg z)i

Figure 14.8 Riemann surface for the logarithm.
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Figure 14.9 A chain of overlapping domains that closes up inC no longer closes up when it is
transferred to the Riemann surface.

Figure 14.10 Riemann surface for the square root – schematic of how the two sheets join.

where ẑ is the point of Ck lying directly above the point z ∈ C. This is a single-valued
function on the Riemann surface, and it is continuous in the sense that the values join
up correctly across the cuts. (In a similar sense we can even say it is differentiable: the
derivatives also join up correctly across the cuts.)
Now we describe how to relate analytic continuation in C to the corresponding opera-

tion on the Riemann surface. Corresponding to a closed chain of domains D1, . . . ,Dn =
D1 ⊆ C, we have D³1, . . . ,D

³
n on the Riemann surface. In C the values of the functions

f1 , . . . , fn agree on the relevant overlaps D1 ∩ D2 , . . . ,Dn−1 ∩ Dn, but because of the
multiformity they do not agree on D1 and Dn.

In contrast, on the Riemann surface we find that if we make D³1 and D³2 overlap, then
D³2 and D³3 , and so on, then by the time we get to D³n it no longer coincides with D³1
because we have moved one level up the Riemann surface, see Figure 14.9. Hence D³1
and D³n no longer overlap, and the difference between f1 and fn is only to be expected.
The multiform nature of analytic continuation is automatically taken care of by the mul-

tiplicity of the sheets of the Riemann surface and how they join together. Even the nature
of the singularity at 0 is apparent from the geometry of the surface, because here all the
levels meet.

14.5.2 Riemann Surface for the Square Root

Similarly for √z we obtain the Riemann surface by taking two copies C1 and C2 of

C, slit from 0 to −∞. Then join the top left-hand quadrant of C1 to the bottom left-
hand quadrant of C2 along the slit; and similarly join the top left-hand quadrant of C2

to the bottom left-hand quadrant of C1 . (To do this in three-dimensional space requires
allowing the surface to intersect itself, but there is no conceptual problem here, see
Figure 14.10.)
Again the phenomena noted above are clear from the geometry of the Riemann

surface: the two values of f (z), the fact that going round the the branch point at the
origin once changes the value but going round twice does not.
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Figure 14.11 Gluing successive domains to form the Riemann surface of the logarithm.

14.5.3 Constructing a General Riemann Surface by Gluing

Obviously we cannot rely on such ad hoc methods to construct the Riemann surface
in general. We can approach the general method through the same example of the
logarithm, but building up the surface in a different way. Consider the sequence of
half-planes Ds and functions fs used for analytic continuation above. Suppose we take
half-planes D³s corresponding to theDs, but make them pairwise disjoint. (The Ds are not
disjoint; for instance D1 = D5 and so on.) Then we ‘glue’ theD³s together in the follow-
ing way: Ds andDs+1 overlap on a quadrant in which fs = fs+1, so we glue together the
corresponding quadrants D³s andD³s+1where they overlap. ThenD³2 glues on top ofD³1 at
the top right-hand quadrant; D³3 glues on to the top left ofD³2; D

³
4 glues on to the bottom

left of D³3; and D³5 glues on to the bottom right of D³4. at this point D
³
5 is lying directly

over D³1, but we do not glue them together since f1 and f5 are different, Figure 14.11.
Continuing with D³6,D³7 , . . . (and in the downward direction D³0,D³−1,D³−2, . . .) we build
up the spiral staircase Riemann surface again.
The general method for constructing a Riemann surface of a complete analytic func-

tion F follows the same lines. Recall that F is an equivalence class of pairs ( f ,D) where
f is analytic on a domain D and ( f1 ,D1) ∼ ( f2 ,D2) if f1 , f2 are equal on the non-empty
set D1 ∩ D2 . We take disjoint copies D³λ of all the domains Dλ occurring in the pairs
( fλ,Dλ ) that belong to F. If Dλ ∩ Dµ ±= ∅ and fλ = fµ on it, we glue D³

λ
to D³µ at the

points corresponding to the overlap Dλ ∩Dµ.

We make this description more rigorous. First, the question of ‘disjoint copies’ D³
λ
of

Dλ. One way to achieve this is to define

D³λ = Dλ × {λ}

Then if λ ±= µ it is clear that D³
λ
∩ D³µ = ∅, and there is a natural bijection

jλ : Dλ → D
³
λ

defined by

jλ(s) = (s,λ) (s ∈ Dλ)

Now for that ‘gluing’. This is accomplished by a simple trick, using yet another equiva-
lence relation, but it requires a certain amount of sophistication to appreciate that it does
what is required.
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Let

(zλ,λ) ≈ (zµ,µ)

for zλ ∈ Dλ, zµ ∈ Dµ, if:

(i) zλ = zµ

(ii) fλ(zλ) = fµ(zµ)

Then the set of equivalence classes under ≈ of points in the union of all the D³λ is

defined to be the Riemann surface of F. The equivalence relation ≈ acts as the glue.
This definition is quite elegant, but might not be immediately appealing.
The advantage of the Riemann surface construction is that we can now think of a

multiform complex analytic function as a genuine function, defined not on C but on the
appropriate Riemann surface, rather than as an equivalence class of function elements.

The Riemann surface gives a ‘global’ view of the function, instead of chopping it up into
‘local’ pieces. The last few sections of this chapter revisit previously discussed material

to explore some of the insights that can be gained in this way.

14.6 Complex Powers

So far we have considered powers za of a complex number z only for rational a, where
zp/q is a qth root of zp . We now define it for arbitrary a ∈ C. We would like to do this so
that the laws za+b = zazb and (za)b = zab, (zw)a = zawa remain valid. It turns out that
we can ‘almost’ do this: however, za is in general multiform, and the formulas hold only
if we choose appropriate values. Even when a is rational this problem already arises.
A natural approach is to write

z = reiθ = elogr+iθ (14.7)

where log r ∈ R, and let a = α + iβ . On the assumption that the above laws hold, we
obtain:

za = (reiθ )a

= e
a(log r+iθ )

= e(α+iβ)(log r+iθ)

= eα log r−βθ ei(β log r+αθ ) (14.8)

We therefore define za by (14.8). This makes sense for all z ±= 0, and for all a ∈ C. It
amounts to requiring that

za = ea log z (14.9)

which is an equally natural way to define za. It follows that in any domain for which we
may define a unique branch of log (such as the cut plane Cρ for any ρ) we may also
define za as a single-valued differentiable function.
In general, however, since log is multiform, so is za. To see what the possibilities are,

choose a particular value θ0 for θ (the obvious choice is the principal value of arg z).
Then the possible θ that make (14.7) hold are of the form
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θ = θ0 + 2nπ (n ∈ Z) (14.10)

Write

(z
a
)n = e

a(log r+i(θ0+2nπ))

which is the ‘nth branch’ of za , obtained by substituting θ from (14.10) into (14.8). The
question is now: how does (za)n depend on n?
From (14.8) we have

(za)n = (e−2nπβ e2nπ iα)(za)0 (14.11)

where (za)0 is the 0th branch. Using (14.11) we can answer the above question. There
are three cases:

(a) If β ±= 0 then za has infinitely many values, one for each n, because

|(za)n/(za)0| = (e−2nπβ )n

which takes distinct values for distinct n. The Riemann surface for za in this case
has the same form as that for the logarithm: an infinite ‘spiral staircase’ on whose
nth layer the function is given by the branch (za)n .

(b) If β ±= 0, so a = α ∈ R, and if further α is irrational, then za = zα is again infinitely
many-valued, with distinct branch values for distinct n. For if (zα)m = (zα)n then

e2mπ iα = e2nπ iα , so e2π i(m−n)α = 1. This implies that (m− n)α ∈ Z by Section 5.7,
which implies that m = n since α is irrational. The Riemann surface for zα is the
same as for case (a), but unlike case (a), the moduli of distinct branches are equal.
Only the arguments vary.

(c) If β ±= 0, so a = α ∈ R, and if further α is rational, then we can write α = p/q in

lowest terms, where p,q ∈ Z. Now zα = q
√
zp.

Following the discussion in (b), two branches give the same values if and only if

(m− n)
p

q
∈ Z

which happens if and only if q divides m − n, because p and q have no common factor
greater than 1.
It follows that the value of (zα)n depends only on nmod (q). The branches

(z
α
)0 , (zα)1, . . . , (zα)q−1

are distinct, but the qth branch repeats:

(zα)q = (zα)0

and repetitions continue thereafter.
The Riemann surface, of course, is a q-sheeted spiral, with its top sheet glued to its

bottom one, as in our discussion of z1/2 but with q sheets instead of 2. Figure 14.12
illustrates the case q= 5.
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Figure 14.12 Section through the Riemann surface for zp/q when q= 5, showing how the layers
glue together.

Figure 14.13 Conformal map of a half-plane to a wedge.

Figure 14.14 How the conformal map of a half-plane to a wedge transforms streamlines.

14.7 Conformal Maps Using Multiform Functions

Conformal mapping with multiform functions requires careful attention to how values
are specified; again, the simplest way to keep track is to put everything on a Riemann

surface. Here we consider only one case, of practical importance: the map z → z
α for

real α ≥ 0. We assume the domain is the cut plane Cπ , on which the map may be defined
to be single-valued.
The great virtue of this map is that it transforms a half-plane into a wedge, as in

Figure 14.13. The vertex angle of the wedge is απ, so we have to assume α < 2 to
prevent the image overlapping itself. The map is conformal except at the origin.
For example, uniform fluid flow, with streamlines re z = constant, transforms to the

flow round a corner of angle απ , as in Figure 14.14.
If we take α = 1/2, the corner is right-angled. Then z = x+ iy and z1/2 = w = u+ iv.

The flow-lines are x = constant. Now z = w
2 so x = u

2−v
2, y = 2uv. The streamlines in

the w-plane are given by u2−v2 = constant; they are branches of rectangular hyperbolas.
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Figure 14.15 Transferring a contour to a Riemann surface.

In combination with other ‘standard’ conformal maps, zα provides a useful weapon
for the applied mathematician.

14.8 Contour Integration of Multiform Functions

It is conventional to interpret a contour integral
¼
γ f of a multiform f by choosing the

values of f (z) so that they vary continuously along the contour. (This still leaves an
arbitrary initial choice to be made, which must also be specified.) A more civilised
approach is to break the contour γ into a sum γ = γ1 + · · · + γn such that:

(i) Each γj lies inside a domain Dj on which f may be defined as a single-valued
function.

(ii) On each Dj we choose a branch of f that makes the values agree where γj and γj+1
join.

In terms of Riemann surfaces, we can interpret this process as the definition of a
contour integral when the contour lies on the Riemann surface. The way the contour
wanders up and down the staircases on the surface automatically takes care of the choice
of values of the multiform function f (z), see Figure 14.15. In practice this is all more

straightforward than it may sound, and the computations are no harder than the uniform
case – provided you use your head.

Example 14.6. Let γ be the contour

γ (t) = (1+ t)eit (t ∈ [0, 6π ])

Find »

γ

z
1/5

dz

Method 1 (stupid): Defining z1/5 on the contour by (γ (t))1/5 = (1 + t)1/5eit/5 makes it
vary continuously with t. By Theorem 6.6
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Table 14.1 Choice of θ.

domain θ chosen in interval

D1 [−π/4, 5π/4]
D2 [3π/4, 9π/4]
D3 [7π/4, 13π/4]
D4 [11π/4, 17π/4]
D5 [15π/4, 21π/4]
D6 [19π/4, 25π/4]

Figure 14.16 Six overlapping domains.

»

γ

f (z)dz =

» 6π

0

( f (γ (t))γ ³(t) dt

=

» 6π

0

(1+ t)1/5eit/5(ieit + iteit + eit) dt

which leads the hopeful calculator along some fascinating byways inhabited by integrals
such as

» 6π

0

t(1+ t)1/5 cos(6t/5)dt

A wise person knows when to cut their losses.
Method 2 (sound but pedestrian): Cover the contour γ by domains in which z1/5 may

be given a unique value for each z, which is differentiable. For example, we can find
six domains D1 , . . . ,D6, one for each of the intervals AB, BC, CD, DE, EF, FG in
Figure 14.16.
To make the values match on overlaps we choose the definition of z1/5 as follows.

Write z = reiθ where the choice of θ is as in Table 14.1.
On each domain choose the branch of z1/5 given by r1/5eiθ/5 with θ in the range stated

in the table. These choices make θ agree on overlaps.
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Break up the integral as
»

γ

=

»

AB

+

»

BC

+

»

CD

+

»

DE

+

»

EF

+

»

FG

In each domain Dj the function z1/5 has an antiderivative 5
6 z
6/5 where z6/5 is defined

using the corresponding branch z6/5 = r6/5e6iθ/5 . By Theorem 6.33, if PQ is any of the
arcs AB, BC, and so on, then

»

PQ

z1/5dz = 5
6Q

6/5
−

5
6P
6/5

When we add the six expressions of this type, all terms but two cancel, so the integral is
5
6G

6/5
−

5
6A

6/5

Here A = γ (0) = 1, G = γ (6π) = (1 + 6π )e6iπ . Evaluate the 6/5th powers according
to the above prescription:

A6/5 = (1 · ei0)6/5 = 1

G
6/5
= (1 + 6π )e

6π i
)
6/5
= (1+ 6π)

6/5
e
36iπ/5

= −(1+ 6π )6/5eiπ/5

Therefore the integral is equal to

−
5
6[(1 + 6π )

6/5eiπ/5 + 1]

Method 3 (slicker): In terms of the parameter t we can define the required branch of z1/5
to vary continuously along the contour γ if we put

z1/5 = (γ (t))1/5 = (1+ t)1/5eit/5

There is a local antiderivative 5
6
z6/5 , whose value varies continuously along the path γ

if we choose branches so that

(γ (t))6/5 = (1 + t)6/5e6it/5

Now pave γ by a finite number of domains, on each of which z1/5 may be rendered
single-valued, choosing the branches to agree with those already chosen on the path. As
above, the integral may be expanded as a sum of terms of the form

5
6
[(1 + tj+1)

6/5e6it j+1/5 − (1+ tj)
6/5e6it j/5]

where the tj subdivide the interval over which t runs. All but two terms cancel, leaving
the same answer as before.
The advantage of this method is that by choosing branches in an obvious way for

γ (t) we may leave the prescription of the domains, and the branches on those domains,
implicit.

Method 4 (smart): Let the Riemann surface do the work. The above analysis easily
generalises to give a version of Theorem 6.33 for multiform functions, integrated along
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a contour in the Riemann surface. Given a global antiderivative F for f on the Riemann
surface, we have

»

γ

f = F(z1) − F(z0)

where z0 is the initial point, z1 the final point, and the branches are chosen with reference
to the end points of γ on the surface, as in Figure 14.15. This gives the result almost
immediately on noting that γ winds three times anticlockwise, so the 6/5th power winds
3 · 6/5 = 18/5 times anticlockwise, giving for F(z1) the argument 2π · 18/5 − 36π/5,
if we choose argument 0 for z0.

We leave it as an exercise to formulate and prove generalisations of Cauchy’s Theo-
rem for contour integrals on the Riemann surface of a multiform function. For those who
prefer not to use the insight that Riemann surfaces provide, however, we recommend
Method 3 above as a relatively direct and simple technique.

Example 14.7. Example 14.6 is of course a bit artificial, and its main interest is ped-
agogical. A more typical example of integrals likely to be encountered in practice
is » ∞

0

xa

1+ x2
dx (a ∈ R, 0 < a < 1)

Note that the restrictions on a make this integral converge, so the question is sensible.
We begin with the complex function

f (z) = za(1+ z2)−1

which is differentiable for all z ±= 0, i,−i, and is multiform for all a in the given range.
Make a cut along the positive real axis and work in the cut plane C0 (in the notation

of Section 2.2). On this domain za may be rendered single-valued: set (reiθ )a = raeaiθ

where θ ∈ [0, 2π ]. Now integrate f (z) along the contour γ in Figure 14.17. This runs
from the real point ρ to the real point R, then once anticlockwise round the circle of
radius R, then back to ρ, then once clockwise round the circle radius ρ.

Figure 14.17 Contour for Example 14.7.
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By Cauchy’s Residue Theorem, Theorem 12.3,
»

γ

f (z)dz = 2πi (± residues inside γ )

We intend to let ρ → 0 and R→ ∞, so we may as well assume that ρ < 1 and R > 1.

Then the singularities inside γ are z = ²i. We calculate the residues at these points as
follows:

At z = i the residue is

α = lim
z→i

za/(z+ i) =
1

2π i
eiaπ/2

At z = −i the residue is

β = lim
z→−i

z
a
/(z− i) =

1

2π i
e
ia3π/2

Let the circle of radius R be γ1, and that of radius ρ be γ2. Then Cauchy’s Residue
Theorem implies that
» R

ρ

xa

1+ x2
dx+

»

γ1

za

1+ z2
dz+

» ρ

R

(xe2π i)a

1+ x2
dx+

»

−γ2

za

1+ z2
dz = 2π i(α+β) (14.12)

Note that in the third integral we must choose the branch of za corresponding to argu-
ment 2π, to retain continuity. Now let ρ → 0 and R → ∞. Easy estimates show that
the second and fourth integrals tend to zero. The first tends to

»
∞

0

xa

1+ x2
dx

and the third to

−e
2π ia

» ∞

0

xa

1+ x2
dx

Therefore

(1− e
2π ia

)

» ∞

0

xa

1+ x2
dx = 2πi

±
1

2π i
e
iaπ/2

−
1

2π i
e
ia3π/2

²

After some manipulation, this leads to
»
∞

0

xa

1+ x2
dx =

π

2 cos(aπ/2)

Yes, but . . . did you spot the nifty footwork? The chosen contour does not actually
lie inside the domain C0 . Nonetheless, the result is correct. There are several ways to
justify the answer rigorously. They include:

(1) Replace γ by a contour that starts just above ρ , say at ρ + iε, runs horizontally to
just above R at R + iε, circles γ1 to just below R at R − iε, runs back to below
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Figure 14.18 Modified contour remains inside C0 .

Figure 14.19 Lifting γ to the Riemann surface.

ρ at ρ − iε, and the goes back round γ2 as in Figure 14.18. Now, as ρ → 0

and R → ∞, make the width 2ε of the channel tend to zero and use continuity
arguments.

(2) The choice of C0 causes problems, so reject it. Work in two overlapping domains,

say C
−π/4 and Cπ/4, and switch between them when defining the second, third, and

fourth integrals in (14.12).
(3) Put it all on a Riemann surface. The contour γ then winds round the staircase and

up one step, then winds back down one step to get back to the start.

Everything generalises to such contours, because they are obviously boundaries of
rectangles in the Riemann surface, Figure 14.19. This argument is an example of the
‘homology’ version of Cauchy’s Theorem, when generalised to Riemann surfaces. We

discuss homology in Chapter 16, but do not extend the ideas to Riemann surfaces since
this would take us too far afield.
These three approaches justify the computational method rigorously. Of course, when

performing the calculations, it is not necessary to trot out such a justification every time

– provided you understand how it would go. Everything works fine as long as you follow
the golden rule: make the multiform function vary continuously as you walk round the
contour.
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14.9 Exercises

1. Define three power series by

a(z) = 1+ z+ z2 + z3+ · · · =
∞µ

n=0

zn

b(z) = i− (z− i − 1)− i(z− i − 1)
2
+ (z− i− 1)

3
+ · · · =

∞µ

n=0

i
n+1

(z− i− 1)
n

c(z) = −1+ (z− 2) − (z− 2)
2
+ · · · =

∞µ

n=0

(−1)
n+1

(z− 2)
n

Find their discs of convergence and sketch them. Prove that a(z) = b(z) on the
overlap of their discs of convergence, and similarly that b(z) = c(z) on the overlap
of their discs of convergence. Do the discs of convergence of a(z) and c(z) intersect?

2. Let f (z) =
∑
∞
n=0 an(z − z1)

n and g(z) =
∑
∞
n=0 bn(z − z2)

n be two power series,
and assume that their discs of convergence have non-empty intersection. Prove that
g is a direct analytic continuation of f if and only if there exists z0 in both discs of
convergence such that form = 0, 1, 2, 3, . . . the equations

mµ

n=0

n(n− 1) · · · (n−m)[an(z0 − z1)
n−m − bn(z0 − z2)

n−m] = 0

hold.

3. A certain function has singularities at precisely the points z such that re z and im z

are integers. You are given its Taylor expansion around the point 1
2
+ 1

2
i. What is

the smallest number of stages needed to find an indirect analytic continuation, by
power series, to a domain that contains 7

2 +
5
2 i?

4. Show that the functions defined by
(i) f (z) = 1+ z+ z2 + z4 + z8 + · · · + z2

n
+ · · ·

(ii) g(z) = 1+ z + z3 + z9 + z27 + · · · + z3
n
+ · · ·

have natural boundaries at |z| = 1.

5. Suppose that f (z) =
∑

anz
n has radius of convergence 1. Set

z =
w

1+ w
= w − w2 + w3− w4 + · · ·

and transform f (z) to a power series in w, say F(w) =
∑

bnw
n . Prove that this latter

power series has radius of convergence ≥ 1
2
, and that if −1 is a singular point of f ,

the radius of convergence is exactly 1
2 .

6. Show that the series
∞µ

n=1

[(1− zn+1)−1− (1− zn)−1]

converges when |z| > 1 or |z| < 1, but that the two functions so represented are not
analytic continuations of each other.



312 Analytic Continuation

7. Suppose that f and g are defined, and have no singularities, on the whole of C.
Define

²(z) =
∞µ

n=1

±
1− zn

1+ zn
−

1− zn−1

1+ zn−1

²

Show that
1
2
( f (z) + g(z))+ 1

2
²(z)( f (z)− g(z))

is equal to f (z) when |z| < 1, but to g(z) when |z| > 1.

8. Let f (z) be the (multiform) function z
√
z. Show that at z = 0 there exists a first

derivative that is the same for all branches, but a finite second derivative does not
exist. What about z2 log z?

9. Describe the Riemann surfaces of the multiform functions:
(i)

7
√
z+ 43

(ii)
√
1− z3

(iii) cos−1 z
(iv) tan−1 z

10. Describe the Riemann surface of

[(z− 1)(z − 2)
−2

]
1/3 + (z− 3)

1/2

11. Let ω ∈ C. Show that the values of 1ω form a subgroup Uω of the multiplicative

group of non-zero complex numbers. Show that Uω is cyclic of order q if ω is a
rational number p/q in lowest terms; otherwise, Uω is infinite cyclic.
Show that Uω is contained in the unit circle if and only if ω is real; lies on the

positive real axis if and only if reω is an integer; and otherwise lies on a logarithmic

spiral parametrised by t ∈ R in the form eαt for some fixed complex number α.

12. Show that the function

f (z) = e−iπ/8
√
z− i

defines a conformal map from the domain in Figure 14.20 (left) to the upper half-
plane.

Figure 14.20 Left: Domain for Exercise 12. Right: Domain for Exercise 13.
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Figure 14.21 Sector occurring in Exercise 14.

Figure 14.22 Contour for Exercise 16.

13. Show that the function

f (z) = e−iπ/3
±
z + 1

z − 1

²2/3

defines a conformal map from the domain in Figure 14.20 (right) to the upper half-
plane.

14. Find the image of the sector −π/n < arg z < π/n, |z| < 1 (Figure 14.21) under
the conformal transformation

f (z) = z(1+ z
n
)
2/n

where n is a positive integer.
15. Let γ (t) = eit, (t ∈ [0, 4π ]). Calculate

¼
γ

√
zdz where at t = 0 we take

√
1 = 1.

16. Using the contour in Figure 14.22 show that
» ∞

0

x−k

1+ x
dx = π cosec kπ (0 < k < 1)

17. Show by contour integration that
» 1

0

dx

(1+ ax2)
√
1− x2

=
π

2
√
1+ a

(a > 0)

18. Using the contour of Exercise 16, show that
» ∞

0

xa

(1+ x2)2
dx =

π (1− a)

4 cos 1
2a

(−1< a< 3)
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Figure 14.23 Schwartz Reflection Principle.

19. Let γ (t) = (1+ 1
2 cos t + i sin t)5, (t ∈ [0, 2π]). Find

»

γ

z99 log z −
√
z+ (z − 1

4
)5/17dz

20. Describe the Riemann surface of the function

f (z) =
½
z+ z2 + z4 + z8 + · · · + z2

n + · · ·

21. Schwartz Reflection Principle. Let U be a domain in C that is symmetric about the
real axis (that is, if z ∈ U then z̄ ∈ U). Let

U+ = {z ∈ U : im z > 0}
U
− = {z ∈ U : im z < 0}

U0 = {z ∈ U : im z = 0}

as in Figure 14.23. Suppose that

f : U+ ∪ U0 → C

is continuous, analytic on U+, and takes real values for z ∈ U0. Then there is an
analytic function F : U → C such that F(z) = f (z) for all z ∈ U+ ∪U0.

(Hint: define F(z) = f (z̄) for z ∈ U−, and use Morera’s Theorem.)



15 Infinitesimals in Real and Complex
Analysis

Historically, calculus began with the study of variable quantities represented as curves
in the plane. These variables could become ‘arbitrarily small’ or ‘infinitesimal’. They
were used to compute derivatives and integrals, and to formulate differential equa-
tions modelling systems that change dynamically. However, the precise meaning of an
infinitesimal caused controversy. At least two different concepts existed: a ‘number’ (of
some kind) that is smaller than any non-zero number, or a variable number that can
become smaller than any positive number. The two were often confused. Moreover, it
is not easy to formalise the idea of a ‘variable number’. (If it varies, how can it be a
number?)

Because of these difficulties, infinitesimals, in either sense, were eventually dis-
placed by the logical epsilon-delta formulation of Weierstrass in the late nineteenth
century. The real numbers form a ‘complete ordered field’, and therefore do not contain
infinitesimals, so infinitesimals were banished from formal mathematical analysis.
Meanwhile, applied mathematicians and theoretical physicists continued to model the

real world using ‘arbitrarily small’ quantities. The familiar formula T = 2π
√
L/g for the

period of a pendulum, derived using the approximation of simple harmonic motion, is a
familiar example. Usually described as ‘valid for small amplitude swings’, this formula

is actually incorrect for any non-zero amplitude. But is is also a very good approxima-

tion for sufficiently small amplitudes, and more accurate formulas cannot be derived
or expressed using elementary functions. This procedure is typically justified by let-
ting the approximations concerned become arbitrarily small – the main traditional view
of an infinitesimal. Thus two parallel but apparently conflicting approaches to calculus
arose: one with, and one without, infinitesimals. Moreover, the tacit assumptions about
infinitesimals applied to two different concepts.
In this chapter we reconcile these views, offering a formal approach to infinitesimals

that lets them be manipulated algebraically. Real infinitesimals can be visualised on an
extended number line, and their complex analogues can be visualised in an extended
complex plane. Infinitesimals are made visible to the human eye by a process of mag-

nification, which is defined algebraically and has a natural visual interpretation. The
formal representation includes the idea of an infinitesimal quantity as a process that
tends to zero, and also as an element in an ordered field extension K of the reals, and
in the corresponding extension of C. We prove a simple structure theorem for such an
extended system that any finite element x in the extended system (meaning |x| < r for
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Figure 15.1 Leibniz’s view of dx, dy as components of the tangent.

some real number r) is uniquely of the form x+ h, where x is a real or complex number

and h is infinitesimal or zero.
This approach provides a formal theory that encompasses both the standard epsilon-

delta approach to analysis in pure mathematics, and the ‘applied’ approach in which
infinitesimals are thought of as variables that tend to zero.

15.1 Infinitesimals

Leibniz, Newton, and their contemporaries used various imaginative devices to deal
with differentiation and integration. Leibniz’s first publication on calculus specified the
derivative dy/dx as the quotient of two finite numbers dy and dx. Figure 15.1 illustrates
his procedure. Suppose that the tangent to a point P on the curve mets the horizontal
axis at B. For any finite horizontal displacement dx, let dy be the corresponding vertical
change of the tangent. Then the ratio dy/dx is the same as y/BX.
In this interpretation, dx and dy do not represent infinitesimals. They represent finite

components of the tangent vector. When the slope of the tangent is m, we can take any
finite number dx to be the horizontal component, and the vertical component is then

dy = mdx

The slope of the tangent to the curve at P is the quotient dy/dx.
The devil lies in the detail. The definition makes sense only when the slope of the

tangent is known, and to do that, it must be calculated. This is where infinitesimals

came in. Leibniz performed the calculation by imagining the graph to be a polygon
with an infinite number of infinitesimally small sides. The tangent at a point was the
prolongation of one of these sides, as in Figure 15.2, where the lengths of the sides are
imagined to be arbitrarily small.

He also conceived of different degrees of infinitely small or infinitely large quantities,
by comparing the size of a ball to that of the Earth, or to the distance to the fixed stars.
This led him to imagine infinitesimals of different orders of size. An infinitesimal of
second order is infinitely smaller than an infinitesimal of first order, and so on. The
reciprocal of an infinitesimal of a given order is an infinite element of the same order.
For instance, if v is a first order infinitesimal, then v2 is a second order infinitesimal and
1/v2 is an infinite element of second order. Leibniz’s ideas were natural, in the practical



15.1 Infinitesimals 317

Figure 15.2 The tangent as the extension of an infinitesimal side.

sense that he imagined arbitrarily small or large quantities, and in the theoretical sense
that they can be manipulated symbolically.
Their logical status was less clear, and disputed. The philosopher George Berkeley,

ridiculed infinitesimals, claiming that it was beyond common sense to imagine quanti-
ties smaller than any sensible quantity, and even more nonsensical to imagine quantities
that are smaller still. He referred to infinitesimals sarcastically as ‘ghosts of departed
quantities’, neatly confusing the two different interpretations. For generations, mathe-
maticians disputed the precise meaning of this elusive concept, seeking to circumvent
the logical difficulties.
Cauchy succeeded, but his ideas were widely misunderstood, even today. He for-

malised the ‘variable quantity’ approach, defining an infinitesimal as a sequence α =
(an) that tends to zero. He could then calculate f (x+α) for infinitesimal α as the sequence
( f (x+an)). He also formulated the notion of continuity for a function in such terms: f (x)
is continuous if, for any infinitesimal α, the difference f (x+α)−f (x) = ( f (x+an)−f (x))

is also infinitesimal. As he grew confident using infinitesimals, Cauchy manipulated
them in the same way as he manipulated variable quantities. He imagined points and
lines after the style of the ancient Greeks, where a line is an entity that has ‘length but
no breadth’ and a point is an entity that has ‘position but no size’. A line is an entity in
its own right. A point can be marked on a line and a line can be drawn through a point.
Furthermore, points can be constant, remaining in a fixed position, or variable, including
infinitesimals as variables that tend to zero.
What is less obvious is the nature of the number line itself. Not only is it possible

to mark rational points on it, but there are also points such as
√
2 or π that arise in

geometric constructions but are not rational. At the end of the nineteenth century, a
solution was found by formulating the completeness property of the number line, so
that it includes not only the rational numbers, but also the limits of convergent rational
sequences. This notion of the reals cannot include infinitesimals if they are defined as
‘smaller than any positive real number’, because this concept is logically contradictory.
A significant change in interpretation then occurred. Instead of a line being something

drawn physically by the stroke of a pen, or imagined theoretically as a Platonic entity
with length but no breadth, it was re-conceptualised as the set of all real numbers –
defined, either as limits of convergent (that is, Cauchy) sequences of rational numbers,
or as Dedekind cuts on the rationals [21]. Now every real number occupies a fixed place
on the number line. It cannot move around, or become ‘arbitrarily small’, so the formal
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real number line cannot include infinitesimals in Cauchy’s sense. Indeed, the notion of a
‘variable’ was reformulated as a fixed but arbitrary member of some set. Movement was
effectively banished from the fundamentals of mathematics. In consequence, the notion
of an infinitesimal was excluded from formal set-theoretic analysis.
Yet the idea that quantities can vary, and become arbitrarily small, remains in the

mental imagery of practising mathematicians, especially in applied mathematics. The
recent arrival of dynamic computer graphics offers an entirely new practical way to
visualise mathematical ideas. Greek geometers drew a curve as a mark in the sand; later
generations drew it in ink on paper, or printed it in a book. Today we can represent a
curve on a high-resolution visual display, and zoom in on part of the curve to magnify
the image. Unlike the magnification of a picture in a textbook, where the thickness of
the graph increases under a magnifying glass, we can now move our fingers apart on
a tablet computer to magnify the picture while the graph is redrawn at the same visual
thickness.

As we zoom in on a standard smooth graph such as y = x
2 , y = ex, or y = sin x,

the magnified picture looks less and less curved. At successively higher magnifications,
a small portion of the graph looks more and more like a straight line, and the graph
and the tangent become visually indistinguishable, see Figure 15.3. Now, under high
magnification, a picture of a smooth graph magnifies locally to look like a straight line.
This suggests a new way of imagining the tangent to a differentiable function: under

high magnification, the graph looks less and less curved, until at suitably high magni-
fication a small portion of the graph looks straight. The derivative is now visually the
slope of the graph, and as we cast an eye along the graph, the derivative is the changing
slope of the graph itself. This property can be visualised for combinations of standard
polynomial, trigonometric, logarithmic, and exponential functions, but it needs to be
formally defined to reach modern standards of rigour, and suitably interpreted to apply
to complex analysis and higher-dimensional vector calculus.

15.2 The Relationship Between Real and Complex Analysis

The generalisation from the real to the complex case follows the same symbolic
formulation, but the visual representations are different. In the real case, we can draw

Figure 15.3 Successive magnifications of a smooth curve.
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Figure 15.4 Top: Tracing a point in the z-plane to see its image move in the w-plane. Bottom:

Visualising this in three dimensions by stacking planes.

the graph of a function f : D→ R as a subset {(x, f (x)) ∈ R2 : x ∈ D}, but this cannot be
directly generalised to the complex case because the graph is a subset of C× C, which
requires four real dimensions. However, we can use alternative representations in two
or three dimensions. For example, Figure 15.4 (top) represents the complex function
w = f (z) by drawing parts of the z-plane and the w-plane side by side. If a finger starting
at a point z traces a path in the z-plane, then the corresponding point w = f (z) moves

around in the w-plane.
This function can be visualised in three-dimensional space by placing the w-plane

above the z-plane, with an arrow connecting z to f (z). This representation is similar to
that used in Figure 2.9, but with an extra dimension in the z-plane.
Then, as z moves in the z-plane along a path γ , the arrow moves along the image path

f γ , tracing out the motion of w = f (z), Figure 15.4 (bottom).

The movement of the finger travelling smoothly along a curve in the z-plane without
stopping can be represented formally by a path γ : [a,b] → C, where γ is differentiable
and γ ±(t) ²= 0 for t ∈ [a,b]. Recall from Definition 6.21 that we call such a path a regular
curve. In this case, the tangent to γ at z0 = γ (t0) makes an angle arc (γ ±(t0)) with the
real axis. In Section 13.3, for an analytic function f , we distinguished between regular
points z0 where f ±(z0) ²= 0 and critical points where f ±(z0) = 0. The behaviour of the
transformed path fγ nearw0 = f (z0) depends on this distinction. The transformed image

path w = f (γ (t)) satisfies ( f γ )±(t0) = f ±(z0)γ
±(t0), and if z0 is a regular point of f , that is

f ±(z0) ²= 0, then the image path has a tangent at w = f (z0) as in Figure 15.5. The tangent
makes an angle

arc ( f ±(z0)γ ±(t0)) = arc ( f ±(z0))+ arc (γ ±(t0))
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Figure 15.5 Mapping a path γ in D by an analytic function f where f ±(z0) ²= 0.

Figure 15.6 Tangent to curve in the w-plane.

with the real axis. The transformation f turns the tangent at a regular point through an
angle arc(γ ±(t0)).

15.2.1 Critical Points

In Section 13.3 we compared the geometry of a differentiable complex function f near

a regular point and near a critical point. For a regular point z0 , the tangent to a regular
curve γ through z0 has a corresponding tangent through f (z0).

Example 15.1. Consider the function f (z) = sin z at the origin where f ±(0) = cos 0 = 1.

The path γ (t) = t + it for t ∈ [−1, 1] in the z-plane is transformed into

f (γ (t)) = sin(t + it) = sin(t) cos(it)+ cos(t) sin(it)
= sin(t) cosh(t) + cos(t) sinh(t)

in the w-plane, see Figure 15.6.

At a critical point, f ±(z0) = 0, so τ collapses to a single point: τ (z0 + h) = w0. In
Chapter 13 we noted that f need not be conformal at a critical point. In this case, a graph
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Figure 15.7 Transforming the path γ (t) = teiθ by the function w = z2.

γ in the z-plane passing through z0 is transformed by an analytic function f in a subtler
manner.

Example 15.2. Consider the function f (z) = z2 at the origin where f ±(0) = 0. The path
γ (t) = teiθ for t ∈ [−r, r] in the z-plane is transformed by f into the composition

f γ (t) = t2 cos(2θ) + it2 sin(2θ )

in the w-plane. (Recall we now write f γ instead of f ◦γ , for brevity.) The original path γ
in the z-plane starts at −reiθ and moves in a straight line through the origin to the point
reiθ on the other side; the path f γ in the w-plane lies on the straight line at an angle 2θ
to the real axis, starting at (−r)2e2iθ = r2e2iθ moving through the origin and turning
back in the opposite direction to r2e2iθ , see Figure 15.7.
This apparently sudden turn in direction turns out to be a direct generalisation of

the real case. If the real function f (x) = x2 is drawn with separate x- and y-axes, as x
increases from −r to +r through the origin, the y-value x2 starts at r2 , moves down to
the origin, and then turns back up again to the starting point.
An alternative way to grasp what is happening is to represent the path γ : [a, b] →

C by writing fγ (t) = u(t) + iv(t) and looking at the graph of (t, u(t), v(t)) in three-
dimensional (t,u, v)-space. In Figure 15.8 the w-plane is drawn horizontally and the
t-axis vertically upwards. As t moves up the vertical axis from −r to r, (t, u(t), v(t))
moves along a path in three dimensions, with the tangent at the origin being vertical
where its projection onto the w-plane is a single point. Looking down on the w-plane,

the point (u(t), v(t)) moves from r2e2iθ to the origin and turns back again.
Imagining t as time, the velocity of the moving point on the path f is ( fγ )±(t) = 2te2iθ ,

and as t passes through the origin the velocity smoothly slows down to zero, and then
reverses without any sudden change in speed.

More generally, if a point moves along any smooth path γ through a critical point in
the z-plane, then the path f γ in the w-plane may turn back in the opposite direction. In
three-dimensional (t, u, v)-space, however, it travels smoothly through the critical point.
For example, for w = z2 , the path γ (t) = 1−eiπ t (t ∈ [−1, 1]) is a circle radius 1, centre
1, which travels through the critical point at the origin in the z-plane. Meanwhile the path
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Figure 15.8 The path f γ in (t, u, v)-space.

Figure 15.9 Magnifying a path in thew-plane through a critical point of f .

in the w-plane passes through the origin as in Figure 15.9. Magnifying the picture in the
w-plane near the origin reveals the path moving in and out in what looks like a straight
line.

15.3 Interpreting Power Series Tending to Zero as Infinitesimals

Using the idea that an infinitesimal quantity is a variable that tends to zero, the variable
part of a power series can be interpreted as an infinitesimal. Moreover, it has a special
property that relates to Leibniz’s idea that infinitesimals have an order of size. Recall
from Definition 13.10 that an analytic function f : D → C is of order n at z0 ∈ D

(where n ≥ 1) if f (n)(z0) ²= 0, and f (k)(z0) = 0 for 1 ≤ k < n. By (13.6) the Taylor series
about z0 then has the form

f (z0 + h) = f (z0) + hnf (n)(z0)/n! + · · ·

which is a constant f (z0) plus an infinitesimal of order n. So the behaviour of f (z) near a
critical point z0 is given by the order of the variable part of the analytic function at the
point. The definition applies to regular points where n = 1, and to critical points where
n > 1, to give a single theory in all cases.
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Using polar coordinates, we observed that if h = reiθ , where h is small, then f trans-
forms a small region of the z-plane near z0 to the w-plane near w0 = f (z0). The radius
r scales to krn , and the original angle θ is multiplied by n and rotates to nθ + α, as we
saw in Chapter 13, Figure 13.6. Moreover, we noted that a further rotation of the line
from z0 to z0 + h in the z-plane through φ rotates the corresponding line in the w-plane
to n(θ + φ)+ α, as in Figure 13.7.
The case of a straight line passing through z0 can now be considered as two half-

lines where φ = π. The image in the w-plane (for suitably small h) is then made up
of two half-lines, one at an angle θ to the real axis, the other at an angle θ + π . Under
the transformation f , the angle between them is increased to nπ . For n odd, this gives
two half-lines in opposite directions and, for n even, it gives two half-lines in the same
direction.

This is a natural generalisation of the real case where, for n odd, as x increases through
zero, so does y, while for n even, the graph of y = xn has a minimum at x = 0, and as x
passes through the origin, y travels down to zero and turns back up again.
The language used in the preceding discussion has been expressed in terms of a

variable h that is ‘sufficiently small’, linking to the Leibniz notion of infinitesimals of
various orders of size and the dynamic idea of ‘arbitrarily small’ quantities in applied
mathematics. We now introduce a formal set-theoretic definition of infinitesimals and
prove a structure theorem that reveals how they can be visualised on a number line or in
a complex plane.

15.4 Real Infinitesimals as Variable Points on a Number Line

The structure of the human visual system makes it natural for us to imagine points
moving along a line. Given a vertical line in the real plane of the form x = v, consider
where various polynomials intersect this vertical line as it is moved to the left or right,
Figure 15.10. A constant function y = k always meets the line at the same height k, but
the line y = x meets the line at a height v, and as the line moves, v varies. As v gets
smaller, the variable point v moves below any fixed positive constant k. In this sense,
as v tends to zero, the variable point becomes less than k for any real number k – one

Figure 15.10 Infinitesimals as variable points on a line.
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interpretation of ‘infinitesimal’. In the same sense, the variable point v2 is smaller still –
infinitesimal compared to v.
The vertical line x = v can now be seen to have two kinds of points. Some are

familiar constant points that remain in the same position, while others are variable, and
can become arbitrarily small. Others can become even smaller.

15.5 Infinitesimals as Elements of an Ordered Field

The plan now is to extend the real numbers R to a larger ordered field K that contains
infinitesimals, and to extend real functions f so that we can calculate f (x) for x ∈ K.

Taking a cue from the previous section, we might begin with the field R(v) of rational
functions in v,

a0 + a1v+ · · · + anv
n

b0 + b1v+ · · · + bmv
m

where a0 ,a1, . . . ,an, b0 ,b1, . . . ,bm ∈ R and bm ²= 0, and give it the structure of an
ordered field by defining v to satisfy 0 < v < k for all positive k ∈ R. This lets us
evaluate rational functions that include infinitesimals.

For instance, if f (x) = x2/(x − 1) we can extend f to include calculations with the
infinitesimal v by substitution:

f (x+ v) = (x+ v)
2
/(x+ v− 1) ∈ R(v)

To extend real functions f : D → R so that we can calculate f (x + h) when x ∈ D

and h is infinitesimal, we work in a suitable larger fieldK. The field K = R(v) is fine for
rational functions, but not for more general functions. Leibniz’s version of calculus deals
with polynomials, trigonometric functions, exponential functions, and, more generally,
any function that can be expressed as a power series. In this case we need a larger field
that includes power series in an infinitesimal. If we include a single infinitesimal ε, then
we also need all the elements that are produced by performing the usual operations of
addition, subtraction, multiplication, and division with power series so that the system is
an ordered field. In particular, the field should include all power series in ε and inverses
of infinitesimals such as 1/ε.

Foundational Example 15.3. (The Superreal Field Generated by a Single Infinitesimal).
The superreal field Rε is defined to consist of all series of the form

∞±

r=n

arε
r

where n is an integer (which may be negative). To obtain a field, the series are added,
subtracted and multiplied term by term. Division in the form

²
∞±

r=m

arε
r

³´ ²
∞±

r=n

brε
r

³
=

∞±

r=m+n

crε
r
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is achieved by solving the equation

²
∞±

r=m+n

crε
r

³ ²
∞±

r=n

brε
r

³
=

²
∞±

r=m

arε
r

³

recursively for successive coefficients cm+n, cm+n+1, . . ..
Here we do not need to worry about convergence, because all the operations are purely

formal. It is possible to give an alternative set-theoretic definition in which the superreals
are defined to be functions s : Z→ R, where each s has an integer n such that s(r) = 0

for r < n. The function s : Z → R then corresponds to the infinite series
∑∞

r=n arε
r .

Knowing that the superreal numbers can be given a formal set-theoretic definition, we
can safely think of them as infinite series in ε.

DEFIN IT ION 15.4. An element
∑∞

r=n arε
r is an infinitesimal of order n if an ²= 0 and

n ≥ 1. It is finite if n ≥ 0 and infinite of order k if n < 0, an ²= 0 and k = −n.

Examples 15.5. (i) ε3 + 17ε25 is a third order infinitesimal.

(ii) 0, 25,π + ε, ε4 are finite.
(iii) 1/ε and ε−11 − 15ε are infinite.
(iv) sin ε = ε − ε3/3! + · · · is a first order infinitesimal.

The term ‘order’ is used here in a special sense referring to the ‘order of size’ of an
infinitesimal as distinct from the order a < b in the field. There may be two elements

a < b where the order of a as an infinitesimal is greater than the order of b. An example

is a = −ε2 and b = ε. If there is a danger of ambiguity, we refer to the order of a single
element a in the sense of Definition 15.4 as the order of infinitesimality of a, and the
order a < b between two elements as the linear order between a,b.
The order of infinitesimality of a =

∑∞
r=n arε

r is the subscript n of the dominant term
an, which is the first non-zero term in the sum.

The linear order a < b also depends on the dominant terms of a,b. If a =∑∞
r=n arε

r ,b =
∑∞

r=m brε
r , then without loss of generality we can assume m ≤ n.

If m = n then the linear order of a, b is the same as the linear order of am,bn . Ifm < n,

then am dominates and the linear order is given by the sign of am. (In the latter case,
bm = 0, so the same rule applies: in this case the linear order of a, b is the same as the
linear order of am, 0.)

Examples 15.6. (i) ε2 < 3ε.

(ii) −1/ε < 0 are finite.
(iii) ε < r for every positive r ∈ R.
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The superreal field generated by just one infinitesimal has many of the properties that
Leibniz wanted. Every non-zero element is either finite or has a specific order as an
infinitesimal, or as an infinite element. Any real function expressible as a power series
f (x) =

∑
∞

r=n arx
r can be extended to define f (x+ δ) for an infinitesimal δ =

∑
∞

s=m bsε
s

by substituting

f (x+ δ) =

∞±

r=n

ar

µ
x+

∞±

s=m

bsε
s

¶r

and then rearranging the result as
∑
∞

r=n crx
r where cr ∈ Rε. This process looks messy,

but it can easily be done term by term. (See the exercises at the end of the chapter.)
Our choice of Rε is made initially for pedagogical purposes; in particular, to investi-

gate intuitive models for limits and derivatives in terms of genuine infinitesimals. This
field has an explicit description, but it does not have all the properties we would like. For
example, the exponential function is not defined at 1/ε. Indeed, exp(1/ε) has a series
involving all negative powers of ε, not just a finite number. This feature causes no prob-
lems in the sequel, but it is a limitation of the current approach to infinitesimals, and it
can be avoided altogether by working with the hyperreal numbers, Section 15.10.
The same technique works in the complex case, where Cε is the supercomplex field of

elements
∑
∞

r=n crε
r where the coefficients cr are complex numbers. Complex functions

f (z) given by power series can be extended to apply to f (z+ δ), where δ is infinitesimal.

However, complex analysis is much simpler than real analysis because every differ-
entiable complex function can be represented locally by a power series. Introducing
infinitesimals into real analysis therefore requires a more powerful extension of the real
numbers.

We begin with a simple definition that proves amazingly effective.

DEFIN IT ION 15.7. An ordered field K that contains the real numbers as a proper
ordered subfield is a super ordered field.

Examples of super ordered fields include the field of rational functions, the superreal
numbers Rε , and many others, such as the hyperreal numbers that are studied in non-
standard analysis, Section 15.9.
A super ordered field has all the familiar properties of an ordered field. It also contains

infinite and infinitesimal elements defined as follows:

DEFIN IT ION 15.8. In any super ordered field K, an element x ∈ K is:

positive infinite if x > r for all r ∈ R
negative infinite if x < r for all r ∈ R
finite if a < x < b for some a, b ∈ R

positive infinitesimal if 0 < x < r for all positive r ∈ R
negative infinitesimal if 0 < −x < r for all positive r ∈ R.

Using the standard properties of an ordered field it is straightforward to prove that an
element x is infinitesimal if and only if 1/x is (positive or negative) infinite. (These and
other properties of arithmetic and order are left as exercises at the end of the chapter.)
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15.6 Structure Theorem for any Ordered Extension Field of R

The key to visualising the infinitesimal structure in the field Rε is a simple but powerful
structure theorem:

THEOREM 15.9. Every element x in a super ordered field K is either infinite, or
uniquely of the form x = c+ h where c ∈ R and h is zero or infinitesimal.

Proof. We need consider only the case where x is finite, so that a < x < b, where
a,b ∈ R. Let S = {r ∈ R : r < x}. Then S is non-empty because a ∈ S, and bounded
above (by b). By completeness of R, the set S has a unique least upper bound c. Let
h = x − c, so x = c + h. Now we use completeness to show that if h ²= 0, then h is
infinitesimal. There are two cases:
For h > 0, suppose that there exists k ∈ R such that 0 < k < h. Then c + k <

c+h = x, so by definition of S, c+ k ∈ S. But this implies that c+ k is greater than the
least upper bound c. By contradiction, h is infinitesimal.
For h < 0, suppose there exists k ∈ R such that 0 < k < −h. Then x = c + h <

c− k < c, so by definition c− k is an upper bound of S. But c− k is less than the least
upper bound c, again giving a contradiction. So h is infinitesimal.
To prove uniqueness, suppose that c + h = d + k, where c, d ∈ R and h, k are

infinitesimal. Then c− d = k − h is infinitesimal or zero, and real. Hence it is zero. We
have now proved that any finite x ∈ K is uniquely of the form x = c+ h, where c ∈ R
and h is infinitesimal or zero.

We extract a key concept:

DEFIN IT ION 15.10. The real number c is called the standard part of x and is written
c = st (x).

This structure theorem is the key to imagining infinitesimal quantities on a number
line. Over the centuries, we have expanded our interpretation of a number line, from
the Greek idea of a line where the distance between two points is the same regardless
of direction, to a number line with positive and negative numbers, rational numbers,
irrational numbers, and real numbers. There is no logical reason to stop there. A super
ordered field, has finite, infinite, and infinitesimal elements. The structure theorem tells
us that any finite element is (uniquely) a real number plus an infinitesimal. An infinites-
imal is, of course, too tiny to see to a normal scale, but this is not as problematic as it
seems to be at first sight (pun intended). For the real numbers, on a normal scale we can-
not see the difference between the irrational number π and the rational number given by
π to a thousand decimal places. However, if we magnified a small part of the picture by
a factor 101000, the difference would become apparent. This simple idea offers the way
ahead: we can magnify a super ordered field to distinguish infinitesimally close points
visually. First, we establish some simple ideas relating finite elements and infinitesimals.

PROPOSIT ION 15.11. Let F be the subset of finite elements in K and I the subset of
elements that are zero or infinitesimal. Then a, b ∈ F, c,d ∈ I imply a + b,a− b,ab ∈

F, c+ d, c− d ,ac ∈ I.
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Proof. These follow from the definitions.

Proposition 15.11 states that the sum, difference, and product of finite numbers are
also finite, but the quotient a/b need not be finite (if b is infinitesimal). The sum and
difference of infinitesimal elements are infinitesimal, and the product of a non-zero finite
element by an infinitesimal is again infinitesimal. (Anyone familiar with ring theory will
recognise that F is a ring and I is an ideal of F; however, this is not essential to follow
the ideas in this chapter.)

PROPOSIT ION 15.12. For x, y ∈ F, the standard part map st : F→ R satisfies

st (x+ y) = st (x) + st (y)
st (x− y) = st (x) − st (y)

st (xy) = st (x) st (y)
st (x/y) = st (x)/st (y) (for st (y) ²= 0)

Proof. Use algebraic manipulation of the definition, taking care with division.

15.7 Visualising Infinitesimals as Points on a Number Line

The structure theorem offers new ways of visualising infinitesimal quantities as points
on a number line. A standard picture cannot distinguish points that differ by an infinites-
imal, because the difference is too small to see, or represent infinite quantities, because
they are too far away. But a linear map m(x) = ax+b for appropriate values of a,b ∈ K

reveals infinitesimal or infinite detail:

DEFIN IT ION 15.13. The map m : K → K where m(x) = (x − c)/d for c, d ²= 0 is
the d-lens pointed at c. If d is infinitesimal, then m is a microscope pointed at d. If c is
infinite then m is a telescope pointed at infinity.
The set

V = {x ∈ K : m(x) is finite}

is the field of view of m.

The field of view V of a d-lens contains those elements x ∈ K whose image m(x) is
finite, and these images can be marked on a finite line in a picture. For instance, if c
is a real number and δ is infinitesimal, the field of view V of a δ-microscope pointed
at c contains c, c + δ, c + 2δ. These differ by infinitesimal quantities, but they map to
m(c) = 0,m(c+ δ) = 1,m(c+ 2δ) = 2, which are now visibly different. At the same

time, the points c+δ and c+δ+3δ2 map tom(c+δ) = 1,m(c+δ+3δ2) = 1+3δ, which
differ by an infinitesimal and cannot be distinguished at this scale. See Figure 15.11.
When we make a map in a real-world situation, say a map of England including

London, we mark the location of London using the same name. This technique can
be used to advantage when magnifying infinitesimal detail using a δ-lens. Renaming the
image points with their original names, as in Figure 15.12, the picture may be interpreted
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Figure 15.11 Scaling up K using a δ-lens pointed at c.

Figure 15.12 Scaling up infinitesimal detail.

as scaling up part of the number lineK to distinguish points that differ by an infinitesimal

amount.

Using a specific map, it is possible to see only a certain level of detail, because
some differences in the image are too small to distinguish, and some are too far away.
Leibniz imagined infinitesimals of order 1, 2, 3, . . . and in the above pictures we have
included only examples of polynomials in an infinitesimal that follow Leibniz’s intu-
ition. However, we must be prepared for more general situations that occur in practice.
For example, if h is an infinitesimal of order 1 and h has a square root r ∈ K , then
r2 = h and r must have order 1

2
. To deal with the general case, instead of referring to

the specific order of infinitesimality as a whole number, we compare the relative order
of size of two elements a,b as follows:

DEFIN IT ION 15.14. If b ∈ K and b ²= 0, an element a ∈ K is:

of higher order than b if a/b is infinitesimal,

of the same order as b if a/b is finite,
of lower order than b if a/b is infinite.

When visualising infinitesimal detail using a δ-lens pointed at c, the field of view
V consists of elements that differ from c by an element of the same or higher order.
Those differing by the same order map onto distinct points: those that differ by a
higher order quantity are indistinguishable to the naked eye. We can model this visually
using:

DEFIN IT ION 15.15. The optical δ-lens or optical microscope µ pointed at c is µ :

V → R where µ(x) = st ((x− c)/δ).
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Figure 15.13 Scaling points in the field of view onto the whole real line.

The image is now a drawing of the real line. Points in V that differ by an element of
the same order as δ map on to different real numbers and points that differ by a higher
order than δ map onto the same real number. Meanwhile, the δ-lens m(x) = (x − c)/δ

maps points outside the field of view V onto infinite elements of K, which are beyond
the range of a finite drawing. In Figure 15.13 the line representing the field K is greyed
out to show that only the point c and the field of view V are magnified to give a visible
point on the real line.
In general, the optical microscope µ : V → R always maps the field of view V onto

the whole of R because µ(c+ xδ) = x for any x ∈ R.
A special case occurs when we take c = 0 and δ = 1. Now the field of view is the set

of finite numbers F, and the optical δ-lens is the standard part function st. The image is
the whole real line and the points mapping onto a particular real number x ∈ R consist

precisely of x and those points differing from x by an infinitesimal. This suggests:

DEFIN IT ION 15.16. The monad Mx around x ∈ K is

Mx = {x+ h ∈ K : h ∈ I}

where I is the subset of K consisting of zero and infinitesimals.

Some sources use the alternative name ‘halo’ in place of ‘monad’.

In this definition, x may be any element of K, so any infinite value of x is also sur-
rounded by its own monad. If x is finite, then by the structure theorem of Theorem 15.9,
there is only one real number c ∈ Mx and the standard part map st : F → R collapses

the monad Mc down onto the real number c.

DEFIN IT ION 15.17. The relationship x ≈ y is defined on K by x ≈ y if and only if
x− y ∈ I.

This is an equivalence relation and the monads are the equivalence classes. It lets us
imagine the picture of the super ordered field K as points on a line, where the finite
points F consist of the real numbers and each real number c is surrounded by the monad

Mc of elements c+ h where h is infinitesimal.

This vision lets us see that any super ordered field K is not complete. We need:

THEOREM 15.18. For a ∈ R, the monad Ma is bounded above by any real number
b > a, but has no least upper bound.

Proof. If l ∈ K is a least upper bound of Ma, then either l ∈ Ma or l ∈ Mb for b > a.

In the first case, for any positive infinitesimal h, l+ h ∈ Ma is greater than the supposed
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upper bound l of Ma . In the second, l− h ∈ Mb is an upper bound for Ma that is smaller
than the least upper bound l. By contradiction,Ma has no least upper bound.

COROLLARY 15.19. A super ordered field is not complete.

This should not be a surprise. A complete ordered field is unique up to isomorphism
and does not contain infinitesimals. So a super ordered field that contains infinitesimals
cannot be complete. The structure theorem, Theorem 15.9, tells us why.
Nevertheless, we now have a fundamentally new way of visualising ‘the number line’.

Not only does it include the familiar real numbers; it can include infinitesimals and
infinite quantities that can be seen by human eyes only through appropriate d-lenses.

15.8 Complex Infinitesimals

The generalisation of infinitesimals in any super real field K can be extended to the
complex case by using quantities of the form x+ iywhere x, y ∈ K and i2 = −1.

DEFIN IT ION 15.20. Given a super ordered field K, the corresponding super complex
field is the field K[i] of polynomials in i where i2 = −1. It is an extension field of the
field of complex numbers C = R[i]. It is a field because the polynomial t2 + 1 has
no zeros in any ordered field, so is irreducible. Alternatively, a direct proof follows the
usual one for C by writing (x+ iy)−1 in the form u+ iv.

An element z = x+ iywhere x, y ∈ K is infinitesimal if both x and y are infinitesimal,
finite if both x and y are finite, and infinite if at least one of x, y is infinite. The standard
part of a finite element z = x+ iy is

st (z) = st (x)+ i st (y)

An element w is of higher order than a non-zero element z if w/z is infinitesimal; of the
same order if w/z is finite and non-zero; and of lower order if w/z is infinite.
Let Fi be the set of finite elements in K[i] and Ii the set of elements that are infinites-

imal or zero. (Again Fi is a ring and Ii is an ideal in Fi with the properties specified in
Proposition 15.11.)

THEOREM 15.21 (Structure Theorem for a Super Complex Field). Every element z =
x+ iy in a super complex field is either infinite or uniquely of the form z = w+ h where
w ∈ C is given by w = st (z) and h is zero or infinitesimal.
For finite u, v, the standard part map satisfies

st (u+ v) = st (u) + st (v)
st (u− v) = st (u) − st (v)
st (uv) = st (u) st (v)
st (u/v) = st (u)/st (v) (for st (v) ²= 0)

st (x+ iy) = st (x) + i st (y)

Proof. If z is finite, then both x and y are finite elements in K, and the structure theorem
for super ordered fields shows that they are uniquely of the form x = c + p, y = d + q
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where c,d ∈ R and p, q ∈ I, so z = w+ h where w = c + id ∈ C, and h = p+ iq ∈ Ii.

The properties of the map st follow by direct calculation.

Many definitions and properties generalise from the real case, such as:

DEFIN IT ION 15.22. The monadMz around z ∈ K[i] is

{z + h ∈ K[i] : h ∈ Ii}

The monads partition K[i] into non-overlapping subsets consisting of points that differ
by an infinitesimal. This includes the case where zmay be infinite, so that even an infinite
element is surrounded by a monad of points differing from it by an infinitesimal. Finite
elements in K[i] consist of the underlying field of complex numbers together with the
monadMz surrounding each complex number z.

DEFIN IT ION 15.23. If d ²= 0, the d-lens pointed at w in a super complex field is

m(z) =
z− w

d

The field of view of m is the set of points z in the super complex field such that (z−w)/d

is finite.
The optical d-lens pointed at w is

µ(z) = st (m(z) = st

·
z− w

d

¸

If d is infinitesimal, the d-lens is called a microscope, and if w is infinite, it is called a
telescope.

Multiplying by a complex number in the form reiθ scales by a factor r and turns
through an angle θ , so it is sensible to take θ = 0 and to select d to be of the form
d = δ+ i0 where δ > 0. (Such an element will be called a positive infinitesimal.) Then
the δ-lens simply scales by a factor δ and does not rotate the image. For this reason, we
will always assume that the scaling factor δ is a positive element of the subfield K.

Example 15.24. Figure 15.14 shows the point z0 = reiθ , where r, θ ∈ R, lying on the
circle |z| = r in K[i], z0 + h = reiθ+ε lies on the circle where ε is an infinitesimal in K.

Let µ be an optical microscope µ(z) = st (z− z0)/δ, where δ is the same order as ε.
Then

h = re
iθ+ε

− re
iθ

= reiθ (eiε − 1)

= z0(iε − ε2/2+ · · · )
= z0iε + higher order terms

So µ(z0) + h = µ(z0 + z0iε), and the point z0 + h on the circle is mapped optically to
the same point as z0 + z0iε.
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Figure 15.14 An infinitesimal part of a circle under optical magnification.

Multiplying by iε rotates the plane through a right angle (multiplying by i) and scales
by the real factor ε, so z0 + z0iε is on the tangent at right angles to the radius from 0
to z0 . Furthermore, for any λ ∈ R, taking ε = λδ maps z0 + z0iε onto a general point
z0 + z0iλ on the tangent, so that the optical magnification transforms the part of the unit
circle in the field of view of µ onto the whole tangent line.
In this very precise sense, an infinitesimal portion of the graph of a circle is ‘locally

straight’ and is indistinguishable from an infinitesimal part of the tangent line when
viewed through an optical microscope.

15.9 Non-standard Analysis and Hyperreals

In the early days of calculus, functions were given by formulas. When the formula is
a polynomial or a power series – which includes functions such as exponentials and
trigonometric functions – the value of f (x + h) for infinitesimal h can be calculated
in the superreal numbers Rε in the real case, or the supercomplex numbers Cε in the
complex case. The derivative may then be calculated as

f ±(x) = st

·
f (x+ h)− f (x)

h

¸
for infinitesimal h

The fields Rε and Cε are sufficient for differentiation. By the Fundamental Theorem
of Calculus, they are also sufficient for integration, using an antiderivative. However,
there is no mechanism in these fields to deal with more general functions such as
sequences s : N → R, and they do not permit a suitable definition of the Riemann

integral. When the real numbers were formulated set-theoretically at the end of the
nineteenth century, infinitesimals had no place in formal epsilon-delta analysis.
In 1966, Abraham Robinson [17] made the formal use of infinitesimals rigorous using

mathematical logic. He introduced an extension field ∗R of R, the hyperreal numbers,
which includes infinitesimals and provides natural extensions of all of the basic func-
tions of analysis. It is based on a distinction between two different types of logical
statement, as follows.
The axioms for arithmetic and order in R quantify properties of elements of R. These

include

for all x, y ∈ R : x+ y = y+ x
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or

there exists 0 ∈ R such that: for all x ∈ R, x+ 0 = x

or

for all x, y, z ∈ R : x > y, y > z implies x > z

Just one axiom – the axiom of completeness – quantifies properties of sets:

for all sets S ⊆ R, if S is non-empty and bounded above,
then it has a least upper bound.

Corollary 15.19 proves that super ordered fields are not complete, because monads

are bounded above but fail to have least upper bounds. This is a subtle clue. When

Robinson introduced the hyperreal numbers, he observed that properties that quantify
elements ( first order logic) generalise to ∗

R, but properties quantifying sets (second
order logic) may not. Writing properties using the universal quantifier ∀ (meaning ‘for
all’) and ∃ (‘there exists’), most properties of arithmetic quantify elements, such as

∀x, y,∈ R : x+ y = y+ x

or

∃0 ∈ R : ∀x ∈ R : x+ 0 = x

These use first order logic, but the completeness axiom – which quantifies sets – does
not.

The solution is to find a system of hyperreal numbers ∗R for which any first order
logical statement that is true for the real numbers R remains true in the extended system
∗R. For example

∀x, y, ∈ ∗R : x+ y = y + x

or

∃0 ∈ ∗R : ∀x ∈ ∗R : x+ 0 = x.

remain true.
However, second order logical statements, such as the completeness axiom, need not

extend to ∗R.

DEFIN IT ION 15.25. The system of hyperreal numbers ∗R is a proper ordered field
extension of R where every subset D ⊆ R has an extension D ⊆ ∗D ⊆ ∗R and every
function f : D→ R has an extension f : ∗D→ R that satisfies:

Transfer Principle: Every true statement about the real numbers R expressed in
first order logic is true in the extended system ∗

R.

(It is convenient use the same symbol for the extended function as for f to avoid
proliferation of ∗s. This should not cause confusion.) We talk of ‘the’ hyperreals, but the
construction does not lead to a unique result; however, any of them does the same job,
so we assume that a particular one has been selected.
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There are two possible approaches to the hyperreal numbers. The first is to assume

that such a system exists and then build up a theory based on the definition. The second
is to provide a formal existence proof, or better, a construction, of a hyperreal number

system.

The first approach, though it does not prove the actual existence of hyperreal numbers,

has great potential. For example, assuming its existence, it is possible to prove that the
extension ∗N of the natural numbers Nmust have infinite elements. The proof is simple.

The first order statement

∀x ∈ R ∃n ∈ N : n > x

states that for every real number x, there is always a bigger natural number n. Its
extension says that

∀x ∈ ∗R ∃n ∈ ∗N : n > x

and, since we know that ∗R contains infinite elements, so does ∗N.
This immediately gives a new way of thinking about the limit of a sequence as a

function s : N → R that extends to s : ∗N → ∗R . Consider the elements s(N) for
infinite N and take the standard part st (s(N)). If this is the same for all infinite N, then
this common value is the limit of the sequence.
For instance, if

sn = s(n) =
6n2+ n

3n2+ 1

then the limit is

st s(N) = st

·
6N2 + N

3N2 + 1

¸
= st

·
6+ 1/N

3+ 1/N2

¸
=

6+ 0

3+ 0
= 2

Limits still have to be calculated, but the definitions become simpler. For instance, the
usual definition of the limit s of a sequence sn of real numbers is

∀ε > 0 ∃N ∈ N : n > N ⇒ |sn − s| < ε

Using the hyperreals, this becomes, as just explained:

For all infinite n ∈ ∗N : s = st (sn)

In general, definitions using the hyperreals (called non-standard analysis) involve
fewer quantifiers than the standard definition. For instance, pointwise continuity of
f : D →R has a standard definition:

∀x ∈ D ∀ε ∈ R (ε > 0) ∃δ ∈ R (δ > 0) ∀x± ∈ D : |x− x±| < δ⇒ |f (x)− f (x±)| < ε

and uniform continuity of f : D→ R has a standard definition:

∀x ∈ D ∀x± ∈ D ∀ε ∈ R (ε > 0) ∃δ ∈ R (δ > 0) : |x − x±| < δ ⇒ |f (X)− f (x±)| < ε

Each has four quantifiers that are highly complicated for the human mind to hold and
manipulate all at once. The corresponding non-standard definitions are, for pointwise
continuity:

∀x ∈ D ∀x± ∈ ∗D : x− x± infinitesimal ⇒ f (x)− f (x±) infinitesimal
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and for uniform continuity:

∀x, x± ∈ ∗D : x− x± infinitesimal ⇒ f (x)− f (x±) infinitesimal

which have only two quantifiers and are much simpler.

15.10 Outline of the Construction of Hyperreal Numbers

It is possible to use the idea of hyperreals based on the transfer principle, without proving
that hyperreals exist. But to put the idea on a sound logical basis, it is important to show
that such a system can be constructed from known mathematics.

Broadly speaking, the construction of ∗R from R follows a similar overall strategy to
the one that Cantor used to construct the real numbers R from the rational numbers Q.

His construction begins with the set of all Cauchy sequences (an) of rational numbers;

where a sequence is Cauchy if for any ε > 0 there exists N ∈ N such that m,n > N ⇒
|am − an| < ε. Then he sets up an equivalence relation:

(an) ∼ (bn) ⇐⇒ (an − bn) → 0

Then R is defined to be the set of equivalence classes of Cauchy sequences, and the
operations of arithmetic and order are derived from operations on Cauchy sequences.
The construction of the hyperreal numbers ∗R from R follows a similar overall pattern.
It begins with all sequences (rn) of real numbers, sets up an appropriate (and cunningly
defined) equivalence relation ∼, and defines ∗R to be the set of equivalence classes. The
field ∗R is considered as an extension of R by identifying the real number r with the
equivalence class [rn], where rn = r for all n. The detailed construction requires the
notion of an ‘ultrafilter’, akin to the axiom of choice. For a more detailed discussion, see
Robinson [17] or Stewart and Tall [21].
Once the equivalence relation is set up, extending real sets and functions to hyperreal

sets and functions is exquisitely simple. The extension of any subset S ⊆ R to ∗S ⊆ ∗R
is defined by:

∗S = {[rn] ∈ ∗R : rn ∈ S for all n ∈ N}

The extension set ∗S is precisely the set of equivalence classes of sequences whose
terms all lie in S. The extension of any function f : S → R to f : ∗S → ∗R is equally
straightforward. Just define

f ([rn]) = [f (rn)] for all [rn] ∈ ∗S

If subsets of the real numbers or real functions are formulated set-theoretically using
statements that quantify only elements, then those sets and functions can be extended to
the hyperreal numbers using the same statements. For instance, if S = {x ∈ R : x ≥ 0}
and f (x) =

√
x, then ∗S = {x ∈ ∗R : x ≥ 0}. Because every x ∈ S satisfies x ≥ 0

and f (x)2 = x, it follows that for every x ∈ ∗S, the same equation holds, so f (x) is the
(positive) square root of x. For a positive infinitesimal x, this means that

√
x is also a

positive infinitesimal whose square is x.
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The theory also extends to more general real functions f : S→ Rn , where S ⊆ Rm , to
give an extension f : ∗S→ ∗R

n that satisfies the transfer theorem for logical statements

quantifying several elements in R. In particular, since every complex function w =

f (z) can be expressed as a real function of two variables taking (x, y) to (u, v), where
z = x + iy and w = u+ iv, the hyperreal theory generalises naturally to the complex

case.

15.11 Hypercomplex Numbers

To treat complex analysis in a similar manner we need the complex analogue of ∗R.
The hypercomplex numbers ∗C are of the form a + ib, where a,b ∈ ∗R and i2 = −1.
(As for hyperreals, the word ‘the’ assumes a particular choice for ∗R, hence for ∗C.)
They generalise the real case so that any function f : S → C extends to a function
f : ∗S → ∗

C that satisfies the transfer principle: any logical statement quantifying
elements inC remains true in ∗C. For example, suppose that a complex analytic function
f : D → C on a domain D is expressed as a power series f (z0 + h) =

∑∞
n=0 anh

n for

h ∈ C, |h| < R. Then the extended function f : ∗D → ∗C is given by the same formula

for h ∈ ∗C, |h| < R. This makes the infinitesimal extension of complex analysis simpler

than the real case.
In particular, for any infinitesimal ε ∈ C, the values of functions can be calculated

using power series in ε, so we need only work in the field Cε. This, of course, is a
subfield of the hypercomplex numbers ∗C, defined in the same way as Rε but using
complex coefficients in the power series in ε.
For any infinitesimal δ, the optical δ-lens µ pointing at z0 ∈ C is defined by

µ(z) = st
z− z0

δ

Its field of view is the set of elements z0 + h where h/δ is finite, so h = δk where k is

finite. This lies within the monad Mz0 of points lying an infinitesimal distance from z0 .

The field of view need not be the whole of the monad. For instance, if we take
any infinitesimal ε and choose δ = ε2 then z0 + ε does not lie in the field of view
of the optical δ-lens µ because ε/δ = 1/ε is infinite. Essentially the optical micro-

scope lets us see detail differing from z0 by the same order as δ, but lower order
detail is too small and higher order detail is too far away to be seen in an optical
image.

Writing 1/δ in polar coordinates as 1/δ = reiθ , the lens magnifies distances from z0

by the (infinite) factor r and rotates through the angle θ . Choosing δ to be any positive
infinitesimal in ∗R gives θ = 0 so that the optical microscope µ magnifies the picture
by a factor r without any rotation. For this reason, when using an optical microscope we
take the magnification factor δ to be a positive infinitesimal in ∗R.

DEFIN IT ION 15.26. A subset S ⊆ ∗
C is called an infinitesimal δ-shape near z0 ∈ C if

it is of the form S = {z0 + h : z0 ∈ C, h is a δ-infinitesimal}.
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Figure 15.15 Magnifying an infinitesimal δ-shape using an optical δ-microscope.

Example 15.27. For an infinitesimal δ ∈ ∗R, the subset

{z0 + h ∈ ∗C : z0 ∈ C,−δ ≤ h ≤ δ}

is an infinitesimal δ-shaped square in ∗C of side 2δ , centred on z0 . Using the standard
convention that the image µ(z) is also denoted by the symbol z, this lets us see the
infinitesimal shape in the complex plane C using the optical microscope µ, see Fig-
ure 15.15.

An analytic function f : D → C then extends naturally to f : ∗D → ∗
C, and

an infinitesimal shape near z0 in ∗D transforms to an infinitesimal shape in ∗
C near

w0 = f (z0).

In the z-plane, let z0 + h be in the field of view of the optical microscope µ(z) =

st ((z− z0)/δ). Then
µ(z0 + h) = st (h/δ)

Using an optical microscope ν(w) = st ((w − w0)/δ) in the w-plane with the same

magnifying factor δ,

ν( f (z0 + h)) = st (( f (z0 + h) − f (z0))/δ)

= st ((( f (z0 + h) − f (z0))/h)st (h/δ)
= f ±(z0)µ(z0 + h)

The complex number µ(z0 + h) is transformed to its optical image ν( f (z0 + h))

multiplied by f ±(z0). Writing f ±(z0) in polar coordinates, f ±(z0) = reiθ , this scales the
picture by a factor r = |f ±(z0)| and turns it through an angle θ = arc ( f ±(z0)), see
Figure 15.16.
If f ±(z0) ²= 0, the transformation of the optical image is conformal, turning the

infinitesimal shape precisely through the angle arg f ±(z0) and scaling lengths by the
factor |f ±(z0)|.

If f ±(z0) = 0, the shape collapses to a single point. In this case, the detail in the
w-plane involves infinitesimals of higher order. In Section 15.2 the Taylor series of f
near z0 is written in the form
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Figure 15.16 Magnifying a transformed infinitesimal shape.

f (z0 + h) = f (z0) + hnf (n)(z0)/n! + · · ·

where n ≥ 1 and f (n)(z0) ²= 0. This is interpreted as the sum of the constant f (z0) plus
the infinitesimal hnf (n)(z0)/n! + · · · of order n in the variable h.
Using an optical microscope of order δn gives

ν(w) = st ((w − w0)/δ
n)

so

ν( f (z0 + h)) = st (( f (z0 + h)− f (z0)/δ
n)

= st (hnf (n)(z0))/n!/δn)
= st (hn/δn)f (n)(z0))/n!
= st (h/δ)nf (n)(z0)/n!
= µ(z0 + h)

n
f
(n)
(z0)/n!

Write µ(z0 + h) = reiθ and f (n)(z0)/n! = keiα in polar coordinates, to get

ν( f (z0 + reiθ )) = rneinθkeiα

so

|ν( f (z0 + reiθ ))| = krn

and

arc ν( f (z0+ h)) = nθ + α

This effect can be seen by starting with an infinitesimal δ-shape in the z-plane in the
form of a sector of a circle centre z0, with two infinitesimal sides of radius δ, at (finite)
angles θ and θ + φ to the real axis. The shape is then transformed in the w-plane as an
infinitesimal sector that can be seen through an optical δn-lens as a sector of a circle,
centre w0 = f (z0), with the radius to f (z0+ h) turned through an angle nθ +α, the angle
between the two radii stretched to nφ, and the lengths of each radius scaled from r to

krn , see Figure 15.17.
In the case of an infinitesimal δ-shape in the form of a circular path f (γ (t)) (t ∈

[0, 2π]) then, as the circle is traced once round the critical point, the image path f γ
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Figure 15.17 Transformation of an infinitesimal shape at a critical point of order n.

Figure 15.18 Optical image of a point moving round an infinitesimal circular path.

traces round the corresponding infinitesimal circle in the w-plane n times. This relates
to the theory of Riemann surfaces, where a point z in the z-plane moves once round a
critical point as its image w = f γ (z) traces round the corresponding path in the w-plane
n times. It is visualised in Figure 15.18 with part of the z-plane magnified by an optical
δ-microscope pointed at z0 and the corresponding part of the w-plane magnified by an
optical δn-microscope pointed at w0 . In the figure the image in the w-plane is represented
by a horizontal plane in three dimensions and the path on the Riemann surface directly
above has n levels. As γ (t) moves in the z-plane from 0 to 2π/n the corresponding
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point on the Riemann surface moves once round the initial level and then moves up on
successive levels as t moves from 2rπ/n to 2(r + 1)π/n, returning to the initial level
when t = 2π .

This phenomenon applies to every point z0 ∈ S. Furthermore, each infinitesimal δ-
circle lies within the monad Mz0 , and each monad contains just one complex number
z0 . If z ²= z0 then an infinitesimal δ-circle around z lies in the distinct monad Mz . The
behaviour of the function near any point z ∈ C therefore depends only on the order of
infinitesimality of the function f at the point z.
This completes the picture of the behaviour of regular analytic functions from an

infinitesimal viewpoint. An analytic function f : D → C has a natural extension f :
∗D → ∗C which generalises to a function from ∗D to the Riemann surface of f with
multiple levels involving points in ∗C . This extension then has a unique analytic inverse
from the Riemann surface back to ∗D.

15.12 The Evolution of Meaning in Real and Complex Analysis

At this point we are in a position to look back on the historical evolution of real and
complex analysis to gain a broader view of the current state of the theory as part of an
ongoing development that will continue to evolve in the future. The historical path taken
depends on the prevailing ideas at the time and may later be seen in an entirely different
light. We review relevant parts of Chapter 0 and then move on to the modern era.

15.12.1 A Brief History

Initially the calculus developed by Leibniz and Newton focused on the relationship
between variables represented as curves in the plane. On the continent, the infinitesi-
mal methods of Leibniz prevailed, while in England, Newton began by thinking of a
variable x changing in time, which he called a ‘fluxion’, and its rate of change x±, which
he called a ‘fluent’. He also formulated the Binomial Theorem in the form

(x+ o)n = xn + nxn−1o+ 1
2
n(n− 1)xn−2o2 + · · ·

leading to the expansion

(x+ o)n − xn

o
= nxn−1 + o · 12n(n− 1)x

n−2 + · · ·

This holds good not only for a whole number n, but also for fractional and negative
powers, which expresses (x+ o)n as a power series in o, and as o becomes small, leads
to the term in o being small enough to neglect, giving the derivative of xn as nxn−1 .
In the eighteenth century, work on the calculus by Euler and others focused on real and

complex power series manipulated as symbols to give significant results whose logical
status would be questioned by later generations. It was not until the turn of the nineteenth
century that Wessel, Argand, Gauss, and others began interpreting the complex numbers
as points in the plane. Derivatives were calculated using the same formula as the real
case, while complex integrals were taken along contours in the plane from z0 to z1 . As in
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the real case, if f has an antiderivativeF in its domain D then
¹ z1
z0

f (z)dz = F(z1)−F(z0),

so the Fundamental Theorem of Calculus generalises directly. But then the theory of real
and complex functions began to diverge spectacularly. In real analysis, functions with
unexpected properties were found: functions differentiable once but not twice; func-
tions differentiable n times but not n+1; and infinitely differentiable functions (such as
f (x) = e−1/x

2
for x ²= 0 and f (0) = 0) that do not equal their Taylor series expansion,

even though it converges. There are even functions that are continuous everywhere and
differentiable nowhere. Mathematicians realised that precise definitions and proofs were
needed to cope with all these possibilities.
Meanwhile, it was discovered that a complex function f differentiable in a domain

D can be represented as a power series in a small disc around any point in D. At the
same time, the arithmetisation of analysis led to the set-theoretic definition of the real
numbers as a complete ordered field, which cannot include infinitesimals.

This resulted in two parallel developments in the twentieth century with very dif-
ferent philosophies. Pure mathematics excluded infinitesimals because they did not fit
into the real number system, while applied mathematicians used them informally but
productively to model dynamic situations. Robinson’s theory of non-standard analysis
redeemed infinitesimals using mathematical logic. However, it was ignored by most

applied mathematicians, who had no interest in that level of rigour, thought in terms of
approximations, and were happy to discard any sufficiently small term if that proved
fruitful, without asking further questions. It was actively resisted by many pure mathe-

maticians, who had invested considerable effort in epsilon-delta analysis and preferred
to remain with a familiar theory, or who preferred to avoid the subtle logical machinery

of ultrafilters, with its reliance on the axiom of choice.
In principle, any theorem in standard real analysis that can be proved using non-

standard analysis has a standard proof, so non-standard analysis may seem to offer
no advantages. However, proofs using non-standard analysis are often simpler than
epsilon-delta, once the initial investment of mastering the set-up has been made. Some

important theorems currently have only non-standard proofs, because an epsilon-delta
proof gets bogged down in too many ε’s. So non-standard analysis has become an
accepted technical tool in mainstream research. However, it is still a very specialised
area.

15.12.2 Non-standard Analysis in Mathematics Education

The intuitive appeal of infinitesimals, as opposed to the difficult machinery of epsilon-
delta methods, offers some educational advantages for students meeting analysis for the
first time. Some programmes have used this approach successfully, but they have not
been widely adopted.
The developments in this chapter reveal these apparently opposing views to be two

sides of the same underlying coin. Applied mathematics focuses on variables that can
‘become small’ while pure mathematics focuses on fixed mathematical objects defined
in epsilon-delta terms. Both can now be seen in a broader set-theoretical context in
which real and complex numbers lie in larger structures that contain infinitesimals. The
elements of such extension fields of R and C may be termed ‘quantities’. A quantity
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x is defined to be infinite if |x| > r for all r ∈ R. It is finite if it is not infinite, and
infinitesimal if 1/x is infinite. Elements in R are called ‘real constants’ and those in C
are ‘complex constants’. This gives a formal language to describe an extension of the
number line or complex plane that resonates with the use of the term ‘infinitesimal’ in
historical development.

The structure theorems prove that every finite quantity x is either a constant or
uniquely of the form x = a + ε, where a is either a real or complex constant and ε

is a (real or complex) infinitesimal. The unique constant a is called the standard part of
x. Optical microscopes let us see infinitesimal detail as a genuine picture on a line or in
the plane. This returns us to an intuitive human way of visualising infinitesimal detail
that resonates with earlier conceptions of the calculus that were rejected in mathematical

analysis at the beginning of the twentieth century.
In 1972 Stroyan [22] introduced the idea of infinitesimal microscopes and telescopes.

These were used in Keisler’s undergraduate text Foundations of Infinitesimal Calculus
based on Robinson’s non-standard analysis, Keisler [10]. In 1980 Tall [23] modified

Stroyan’s definition to include optical lenses and applied the theory to the simpler system
of superreal numbers.

In his book Visual Complex Analysis, Needham [14] sees a complex analytic function
w = f (z) transforming the z-plane into the w-plane. Figure 15.19 shows f (z) = z2

transforming a shape in the z-plane to its image in the w-plane.
The black T-shape in the z-plane is transformed visually into a T-shape in thew-plane

that is scaled in size and rotated through an angle. The scaling and rotation become

more precise as the shape becomes smaller. In particular, near a point zwhere f ±(z) ²= 0,

a small shape is scaled approximately by a factor |f ±(z)| and turned through the angle
arg f ±(z). Needham introduced the term ‘amplitwist’ to indicate that the transformation

‘amplifies’ the scale by a factor |f ±(z)| and ‘twists’ the shape through the angle arg f ±(z).
He used the term ‘infinitesimal’ in a technical way that ‘does not refer to some mystical,

infinitely small quantity’. Instead (in Needham [14], pages 20–21) he suggested ‘two
intuitive ways of speaking’, formulated as follows:

. . . if two quantities X and Y depend on a third quantity δ, then
limδ→0

X
Y
= 1 ⇐⇒ ‘X = Y for infinitesimal δ’

⇐⇒ X and Y are ultimately equal as δ tends to zero.

Figure 15.19 A visual transformation from the z-plane to thew-plane.
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Figure 15.20 Polar coordinates r, θ, with increments dr, dθ .

This does not explicitly say what an ‘infinitesimal’ is. The approach in the current
chapter defines an infinitesimal formally as an element in an ordered field extension K

of the real numbers or in the corresponding complex extension field K[i].

15.12.3 Human Visual Senses

Thinking of an infinitesimal as a variable that is ‘becoming small’ is a natural human

way to visualise infinitesimal ideas. Our eyes and brains have been wired by evolution to
detect moving objects. This way of thinking also has practical advantages over thinking
of an infinitesimal only as a tiny physical quantity. For example, using polar coordinates,
Figure 15.20 shows (r, θ) being given a further increment dr in the radius and dθ in the
angle.

If r, θ , dr, dθ are all finite quantities, we can draw this as a finite picture. But if r and
θ are finite and dr, dθ are infinitesimal, we cannot draw the whole picture to the same

scale. Using an optical δ-lens to magnify the infinitesimal shape sides dr by rdθ to give
a finite picture requires dr, dθ , and δ all to have the same order. If r ²= 0, then r has

higher order than δ, so if a δ-lens is used magnify the shape dr to reveal a finite picture,
the origin, distance r away, lies outside the field of view. On the other hand, if r is drawn
to a finite scale, the optical picture of the infinitesimal shape reduces to a single point.
This means that while we may imagine infinitesimals as arbitrarily small fixed ele-

ments in an extension field of the real or complex numbers, when making a physical
drawing, it is more natural to think of them as variable quantities that become very
small.

Recent research into how the human eye works shows that imagining points moving

smoothly is a natural human facility. When we read text, our eye has a sharp focus which
only reads a few consecutive letters (around four or five with standard size type) and our
eye jumps along the line taking in information, attempting to build up the meaning of
successive stretches of text. If you look at a paragraph on this page and focus on how
you read it, you can sense these jumps (called saccades) as the eye moves along the text.
(Try it now.) However, if you look at an object moving smoothly, there is an initial jump

to lock on to the object in the sharp central vision, and the eye then follows the object in
a smooth movement. This means that it is natural to imagine a point moving smoothly

along a line.
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15.12.4 Computer Graphics

New technologies are evolving which let users dynamically control movement on a high-
resolution visual display, smoothly zooming in on graphs or moving objects around.
Software such as Mathematica and GeoGebra let a human operator code mathemati-

cal ideas symbolically, and manipulate pictures dynamically to explore mathematical

relationships.

Placing the w-plane above the z-plane lets a three-dimensional view be drawn on a
two-dimensional dynamic display, where z = x + iy is represented on the z-plane as
(x, y, 0) and w = u+ iv is represented on the w-plane as (u, v, 1). As z = x + iy moves

around in the z-plane, the corresponding value w = f (z) = u + iv moves around in
the w-plane. The transformation from z to w can be signified by an arrow linking z to

f (z). As z varies, this gives a mapping diagram from the z-plane to the w-plane as shown
earlier in the lower part of Figure 15.4.
Figure 15.21 shows a display created in GeoGebra (see Flashman [6] to explore the

dynamic software on the internet). It is in three framed areas. The central area shows the
mapping diagram for the function f (z) = z3 + pz + q from the z-plane to the w-plane
for p = −1.9,q = 3.3. On the left is an area showing the z-plane and a circle radius
δ = 1.0 with m = 24 points equally spaced around it. The area on the right shows the
graph of the real function y = x3+ px+ q. On the screen are boxes to input the formula

for the function f and the variables p and q, as well as sliders with movable points to
vary p, q, δ, and m. The central area can also be selected to change the viewpoint or the
scale.

Figure 15.21 Using Geogebra to explore the cubic function f (z) = z3 + pz+ q. You can interact
with this worksheet at www.cambridge.org/gb/S&T-geogebra
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New possibilities arise that cannot be adequately described using a static picture in a
textbook. The design provides two boxes to tick: one (MD) hides or shows the Mapping

Diagram, which consists of the arrows from the points around the circle radius δ in the
z-plane to the w-plane; the other shows or hides the roots of the equation f (z) = 0.

The three roots marked r1 , r2, r3 are shown in the panel on the left, where r3 is on the
real axis, and r1 , r2 are complex conjugates. Moving q up or down moves the real graph
in the right frame dynamically up or down by the same amount. The graph as pictured
has one real root near −2, and two complex conjugates near 1 ³ i. As q decreases, the
real cubic curve moves down by the same amount until the function has three real roots.
As this happens, the roots r1, r2 in the left frame move towards each other until they
coalesce as a repeated real root, then separate into two distinct real roots, so that the
cubic has three real roots.
The user can manipulate the picture dynamically to focus on aspects of interest. For

example, the left panel has an icon ±́which, when clicked, causes the chosen parameter

(here p) to vary dynamically over its given range (here −5 to 5) and, as it does so,
it displays the changing situation of the roots of the real cubic as the equation shifts
between having one real and two complex conjugate roots to having three real roots.
The GeoGebra environment allows the user to create and explore dynamic figures in

complex analysis, Flashman [5].

15.12.5 Summary

Interpretations of complex analysis continue to evolve into the future. New approaches
in modern times are part of a more comprehensive overall picture in which intu-
ition may be translated into rigour and conversely, proving structure theorems returns
formal rigour to more sophisticated forms of symbolic manipulation and visual
intuition.

This broader vision reveals the fundamental distinction between real and complex

analysis. Real analysis considers functions that exhibit many different properties and
require highly sophisticated construction of the hyperreal numbers to cope with the logi-
cal introduction of infinitesimals. Meanwhile, complex differentiable functions are given
locally by power series around any point in a connected open domain and these can be
manipulated in the much simpler extension fieldCε generated by a single infinitesimal ε.

This simpler extension encompasses the more powerful theory of analytic continuation
and Riemann surfaces. From this higher vantage point we can see, at a single glance, the
distinction between the technically complicated theory of real analysis and the subtle
sophistication of complex analysis.

15.13 Exercises

1. Figure 15.22 shows the path γ : [−π, π] → C given by γ (t) = t + it and the
analytic function w = f (z) = cos z. Calculate f γ ,γ ±(t), and ( fγ )±(t) as functions of
t. Interpreting t as time, consider the points γ (t) and ( fγ )(t) moving along the paths
imγ , im f γ . By comparing the motion in the w-plane in the intervals −π ≤ t ≤ 0
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Figure 15.22 Geometry for Exercise 4.

and 0 ≤ t ≤ π , or otherwise, explain what happens in the w-plane as t passes
through 0.

2. Let γ : [−1, 1] → C be given by γ (t) = t3 + it2 . Use a graph plotter to draw
the parametric graph of (t3, t2) and magnify the graph at various points. Conjecture
what the highly magnified portions of the graph will look like for t = 0 and t ²= 0.
Calculate γ (t) numerically for t = −0.001, t = 0, t = 0.001 and draw the graph
for−0.001 ≤ t ≤ 0.001 on a standard piece of paper. What happens if the graph is
scaled from t = −10−6 to +10−6 on a standard piece of paper?

3. For f (z) = z2, plot the paths γ1(t) = 1+it (−1 ≤ t ≤ 1), γ2(t) = −1+ it (−1 ≤ t ≤

1), γ3(t) = it (−1 ≤ t ≤ 1) in the z-plane and their transformed paths f γ1 , fγ2, f γ3
in the w-plane where w = f (z). Imagine t increasing smoothly in time from t = −1
to t = 1 and trace the movement of the corresponding point along each graph with
your finger. One has a different behaviour from the other two. Which one? Explain
why, by considering the critical point of f .

4. Determine the Taylor expansion f (z0 + h) of the following functions about a point
z0 and deduce the order of the variable part f (z0 + h) − f (z0) at that point:
(i) sin z − z at z0 = 0

(ii) cos z at z0 = 0 and at z0 = i
(iii) z5 at z0 = 0 and at z0 ²= 0
(iv) The principal value Logz at z = 1

5. Let K be a proper ordered field extension of the real numbers R. For x ∈ K, write
down the definition for x to be finite, positive infinite, negative infinite, infinite,
positive infinitesimal, negative infinitesimal, infinitesimal. In each of the following
cases, decide whether the given statement is true or false for all x, y ∈ K. If it is
true, give a proof; if it is false, provide a counterexample (for instance, using the
field K = R(v) of rational functions in a variable v).
(i) x negative infinite implies 1/x is negative infinitesimal
(ii) x infinite implies 1/x is infinitesimal
(iii) x infinitesimal implies 1/x is infinite
(iv) x finite, y infinitesimal implies xy is finite
(v) x finite and non-zero, y infinitesimal implies xy is infinitesimal
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(vi) x infinitesimal, y infinitesimal implies x/y is infinitesimal

(vii) x finite, y infinite implies xy is infinite
6. For x ∈ K[i] where i2 = −1, write down the definition for x to be finite, infinite,

infinitesimal. In each of the following cases, decide whether the given statement is
true or false for all x, y ∈ K[i]. If it is true, give a proof; if it is false, provide a
counterexample.

(i) x infinite implies 1/x is infinitesimal

(ii) ) x infinitesimal implies 1/x is infinite
(iii) x finite, y infinitesimal implies xy is finite
(iv) x finite, y infinitesimal implies xy is infinitesimal

(v) x infinitesimal, y infinitesimal implies x/y is infinitesimal

(vi) x finite, y infinite implies xy is infinite.
7. In the field K = R(v) of rational functions in a variable v, place the following

elements in linear order and in order of infinitesimality:

v, 1 − v, 1/(1− v),−1/v, v/(v− 1)

8. Prove Proposition 15.11 that if F is the subset of finite elements in a super ordered
field K and I is the subset of elements that are zero or infinitesimal, then

a,b ∈ F and c,d ∈ I implies a+ b, a− b, ab ∈ F, c+ d, c− d, cd ∈ I

9. Prove Proposition 15.12 that if x, y ∈ F, where F is the subset of finite elements in
a super ordered field, then the standard part map st satisfies

st (x + y) = st (x)+ st (y),
st (x − y) = st (x)− st (y),

st (xy) = st (x) st (y)
st (x/y) = st (x)/st (y) (for st (y) ²= 0).

10. Calculate the coefficients cm+n, cm+n+1 , cm+n+2, cm+n+3 which arise when division
²
∞±

r=m

arε
r

³
/

²
∞±

r=n

brε
r

³
=

²
∞±

r=m+n

crε
r

³

in the superreal field Rε and the supercomplex field Cε, is determined by solving
the equation

(cm+nε
m+n+· · ·+(crεr+· · · )(bnεn+· · ·+(brεr+· · · ) = (amε

m+· · ·+(arεr+· · · )

for successive coefficients cm+n , cm+n+1 , . . ..
11. Show that there are some positive infinitesimals δ ∈ Rε that fail to have a square

root in Rε. Nevertheless, show that, for any z = x + iy ∈ Cε where x, y ∈ Rε , the
modulus |z| =

º
x2+ y2 can be calculated as an element in Rε. (Hint: each of x, y

is either zero, or of the form aεn(1+ δ), where δ is infinitesimal.)
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12. For an infinitesimal δ, calculate which of the following are finite and which
are infinite (using power series for trigonometric or exponential functions where
necessary):

(i) 3δ + 1/δ

(ii) sin(iπ + δ)

(iii) δ2 sin(1/δ)

(iv) sin(iπ + δ)

(v) eiπ+δ

(vi) eiπ+kδ for k ∈ C

In those cases where the element is finite, calculate its standard part.
13. For f : D → C (where D is a domain in C) given by the following formulas,

calculate the standard part of ( f (z + h)− f (z))/h in a super complex field, where h
is an infinitesimal, and hence find the derivative f ±(z) for z ∈ D.

(i) z3 − 2z2

(ii) 1/(z− 2) for z ²= 2

(iii) (1+ z3)n for n ∈ N

(iv) sin z (in a super complex field including power series expansions)
(v) z2 sin z

14. Write down the definition for hyperreal numbers ∗R, hypercomplex numbers ∗C

and the transfer principle for hyperreal and hypercomplex numbers.

(i) Use the first order statement ∀x ∈ R ∃n ∈ N : n > x to deduce that there exist
infinite hypernatural numbers N ∈ ∗N, where N ²∈ N.

(ii) By considering the property

∀m,n ∈ N : m > n⇒ m− n ∈ N

use the transfer principle to show that if m is an infinite hypernatural number

and n is a natural number, then m− n is an infinite hypernatural number.

(iii) Let E = {2n ∈ N : n ∈ N}, O = {2n− 1 ∈ N : n ∈ N} be the set of even
and odd natural numbers. Use the transfer principle to show that every infinite
hypernatural number N is either even (in ∗E) or odd (in ∗O) and that N is even
if and only if N + 1 is odd.

15. Using the hypercomplex numbers, by considering the standard part of zN for infinite
N, determine whether the sequence (zn) converges. If it does, calculate the limit, if
not, explain why.
(i) (n3 + sinn)/(n3 − 2n2)

(ii) 1+ k + k2 + · · · + kn−1 for k ∈ C, k < 1

(iii) 1+ 1
2 + ( 12 )

2 + · · · + ( 12 )
n−1 for n odd,

2n3 + 3n− 17

(n2 + 3n)(n+ 1)
for n even

(iv)
n3 + sinn

n3− 2n2
for n odd, 2 +

1

n
for n even

16. Visit the Geogebrawebsite www.geogebra.org/ and use it to investigate some of the
curves in C andR3 discussed in this book.



16 Homology Version of Cauchy’s
Theorem

In Chapter 8 we proved the classical version of Cauchy’s Theorem, using step paths to
simplify the geometry and topology involved. In Chapter 9 we developed the concept of
homotopy, and reformulated Cauchy’s Theorem in that framework. Homotopy is one of
the basic ideas in algebraic topology. A related topological concept, homology, emerged

a little earlier from work on the classification of surfaces. This notion and its extensions
are of great importance in algebraic topology. When applied to domains in C, it provides
fresh insight into Cauchy’s Theorem and its consequences.
In complex analysis we view homology as a topological property of a domain D ⊆ C,

but we define it in terms of properties of paths in D. There are then deep connections
between the homology of D and the behaviour of complex integration along paths in D.
In this respect homology is like homotopy, which is also a topological property defined
in terms of paths. The two concepts are related, but different. For homotopy, two paths
in a domain are considered to be equivalent if one can be continuously deformed into the
other. In the context of homology, two paths in a domain are considered to be equivalent
if they differ by a path that forms the boundary ∂R of a rectangle R whose image lies in
D, as described in Section 9.3 – and, by extension, if they differ by a finite set of such
boundary paths.
In this chapter, we develop a homology version of Cauchy’s Theorem, and examine a

few of its consequences, including a homology version of Cauchy’s Residue Theorem.

The material here is a natural continuation from Chapter 9. We have postponed it until
now to avoid delaying the more standard material in Chapters 10–14. The main ideas
are simple, elegant, and geometrically intuitive, although the formal setting takes a little
getting used to. Also, proofs have a habit of getting tangled up in combinatorial argu-
ments about step paths. Here, algebra often comes to our rescue. The topology is fairly
subtle, and results that seem obvious sometimes require a little care if we want a rigor-
ous proof. We work throughout with step paths that lie in a domain D ⊆ C. Recall that a
domain, in this context, is open and connected; moreover, being connected is equivalent
to being path-connected. Cauchy’s Theorem concerns the integral of a complex function
on D over a closed step path in D.

REMARK 16.1. For the figures in the chapter, we often do not draw paths explicitly as
step paths, because lots of little steps everywhere just make the figures more complicated

without adding any understanding. We draw the steps only when they matter.
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16.0.1 Outline of Chapter

We sketch the main ideas of this chapter now. Formal definitions and proofs come later.
Throughout this chapter, we abbreviate ‘step path’ to ‘path’, except when we want to
emphasise that we are working with step paths. Our terminology and approach to homol-

ogy are tailored to the material in this text, and adapted to the simpler geometry of step
paths. Topologists generally set up homology in a more general, more abstract, and more

elegant manner, see for example Hatcher [8] or Hocking and Young [9].
Homology provides a natural context for several features of complex integrals that we

have previously noticed:

• Integrals are additive: the integral of a given function along a sum of paths is the sum
of its integrals along the separate paths.

• Moreover, the integral of the function along the reverse of a path is minus the integral
along the path, allowing subtraction as well as addition.

• Cauchy’s theorem for a boundary, Theorem 9.6, states that if R is a rectangle and
φ : R → D is continuous, and f : D → C is differentiable, then the integral of f
along the boundary of φ vanishes.

• On the other hand, the integral of f along an arbitrary closed path need not vanish. Its
value depends on how the path winds around points not in D.

All of these facts are closely related, suggesting that they can all be put together in a
natural context. The question is: what?
Our definition of a sum of paths in Section 2.8 involves joining them end to end,

and we have to impose special conditions for that to be possible. This corresponds to
the classical view that a function should be integrated ‘along’ a path. However, we can
extend integration to any finite set of paths, even if they do not join up to create a single
path, just by adding the separate integrals together. A path γ can be repeated any number

of times to give a path nγ for n ∈ N \ {0}. For negative n we can define nγ to be −n
times the reverse path −γ . Finally, the empty set of paths plays the role of 0. So we can
define an arbitrary integer combination

m1γ1 + · · · +mnγn

of paths γj, for mj ∈ Z.

At first glance, these combinations seem to form a group (indeed, an abelian group)
under addition, but there is a technical problem: if γ is a path, γ + (−γ ) ought to be
the zero element of this group, which is empty. Actually, as described above, it is the set
{γ ,−γ }, which is not empty.

On the other hand, the integral of f along γ+ (−γ ) is always zero, so this discrepancy
has no effect on integrals. All of which suggests that we must somehow redefine γ +

(−γ ) to be zero. Mathematicians have a standard trick to resolve this kind of difficulty:
introduce an equivalence relation in which γ + (−γ ) is equivalent to 0, and work with
the equivalence classes. The equivalence relation we need is homology, and the clue for
how to define it is Cauchy’s Theorem for a boundary. Essentially, we want any boundary
path to be equivalent to zero. Everything else follows from that.



352 Homology Version of Cauchy’s Theorem

Since we are trying to construct a group, a natural way to achieve all this is to build
in the group property right at the start. Then Cauchy’s Theorem for a boundary tells us
how to define the equivalence relation of homology using group theory, where it takes a
very simple, though more abstract, form. To accomplish this, we define integration over
‘chains’. A chain is a formal integer combination

± = m1γ1 + · · · + mnγn

where the γj are step paths (not necessarily closed) and themj ∈ Z. We explain what this
means, how to formalise it, and how to visualise it, in Section 16.1. When all mj = 0 the
chain is empty, and this possibility is allowed in the definition.
Be warned: addition here is not quite the same as addition of paths as defined in

Section 2.4, and −γ is not quite the same as the reverse path to γ . As we have just
seen, the classical operations + and − run into technical problems, and we have to get
round those. However, the classical notions and the abstract group operations are closely
related. The precise relationship is given in Lemma 16.15: we can identify them ‘modulo

homology’.

The group of chains has two important subgroups. The first is the subgroup of
‘cycles’, which correspond to formal sums of closed step paths, which we call ‘loops’.
Inside the subgroup of cycles we define a further subgroup of ‘boundaries’. A boundary
is now a formal integer combination

β = m1β1 + · · · +mrβr

where each βj = ∂Rj is the boundary of a rectangle in D, and the mj ∈ Z. Every
boundary of a rectangle is a loop, so in particular boundaries are cycles.
By ‘rectangle in D’ we mean a continuous map φ : R → D such that the image

φ(R) ⊆ D, just as in Cauchy’s Theorem for a boundary. Chains, in contrast, are defined
by the image φ(∂R), and in that case the map is not required to be defined on the interior
of R, let alone to have its image a subset of D. Indeed, the distinction between these two
cases is central to homology.

To complete the set-up, two cycles ²1,²2 are said to be ‘homologous’ if their dif-
ference ²1 − ²2 is a boundary. Another term for being a boundary is ‘homologous to
zero’.

The machinery of chains, cycles, boundaries, and homology is beautifully adapted
to natural properties of complex integrals along paths. Let f : D → C be a continuous
function. Integration over paths can be generalised to integration over chains, hence also
over cycles or boundaries, by defining

±

±

f = m1

±

γ1

f + · · · +mn

±

γn

f

Boundaries come into play because we proved in Theorem 9.6 that the integral round
the boundary of a rectangle whose image lies inside a domain is zero:

±

∂R

f = 0
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So the integral of f over a cycle² is unchanged if we add or subtract a series of bound-
aries of rectangles – that is, if we add a boundary to ². In other words, for any fixed f ,

the integral depends only on the homology class of the cycle.
We also need to define winding numbers for chains, which we do by defining

w(±, z0) = m1w(γ1, z0) + · · · +mnw(γn, z0)

We already know that the winding number for a path can be specified by an integral as
in (7.6). This relationship also holds for chains.
Once these concepts have been set up, we come to the main aim of the chapter, which

is to prove:

THEOREM 16.2 (Homology Version of Cauchy’s Theorem). Let f : D → C be a
continuous function, and let ² be a cycle in D. Then the following are equivalent:

(i) ² is homologous to zero (that is, it is a boundary) in D.
(ii) All integrals over² vanish:

±

²

f = 0 for all differentiable f .

(iii) All winding numbers of ² around points outside D vanish:

w(², z0) = 0 for all z0 ±∈ D.

The proof of this theorem occupies most of this chapter. When the proof is complete,

we derive some useful consequences.

16.0.2 Group-theoretic Interpretation

Homology can be interpreted group-theoretically, as Emmy Noether noticed when
attending lectures on topology by Heinz Hopf in 1926–7. Leopold Vietoris and Walther

Mayer independently discovered the same interpretation at much the same time. Chains
C, being formal integer combinations of specific objects (here paths), form an abelian
group under formal addition. Cycles Z form a subgroup of C, and boundaries form a
subgroup B of Z. Because the group of chains is abelian, these are normal subgroups.
The equivalence relation of homology on Z determines a quotient group

H = Z/B = cycles/boundaries

Specifically, the equivalence classes for homology are precisely the cosets of B in Z.

All four groups C,Z,B, andH depend onD. The groupH is the first homology group
of D, usually written H1(D). (In the topology of higher-dimensional spaces in Rn and

Cn there are also ‘higher’ homology groups Hk (D) for k = 0, 1, 2, 3, . . ., but only H1(D)

concerns us here.) The elements of H can be thought of as the ‘essentially different’
topological types of loops in D, up to homology.

With hindsight, our previous results related to Cauchy’s Theorem offer strong hints
at the existence of this algebraic structure. As already noted, integrals vanish on bound-
aries. Paths can be added to give new paths, and integrals are additive. So are winding
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numbers. Our aim is to develop a formal algebraic context that unifies these hints.
Algebraic topology originated from these and related considerations.
To make the discussion as self-contained as possible, our approach will be classical (a

polite way to say ‘old-fashioned’). The modern approach to homology is more general
and more abstract.

16.1 Chains

Let D ⊆ C be a domain. Recall that a (step) path in D is a map

γ : [a,b]→ D

with the step property (sum of finitely many line segments parallel to the real or
imaginary axis). To keep the terminology simple, we define:

DEFIN IT ION 16.3. A loop in D is a closed step path γ : [a,b] → D, so γ (a) =
γ (b).

Let

P = {all paths in D}

We turn P into an abelian group using an algebraic trick (which can turn any set into a
subset of an abelian group):

DEFIN IT ION 16.4. A chain ± in D is a formal integer combination

± = m1γ1 + · · · + mnγn (16.1)

where the γj ∈ P are distinct paths in D and the mj ∈ Z.

The set of all chains is denoted by C.

A more respectable, but less convenient, definition views the mj as the values of a
function m : P → Z, which maps γj to mj. Thus we define

Z(D) = {m : P → Z : m(γ ) = 0 for all except a finite number of γ ∈ P}

We can pass between functions m and formal sums (16.1) as follows:

(i) Given (16.1), define m by:

m(γ ) =

²
mj if γ = γj

0 if γ ±= γj for any j

(ii) Given m, define

± = {γ ∈ L : m(γ ) ±= 0}
mj = m(γj) for γj ∈ ±

We can add two such functions:

(m1 +m2)(γ ) = m1(γ )+m2(γ )

and we then have:
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Figure 16.1 Visualising a chain. This is ± = 3γ1 − 4γ2 + 2γ3 . It so happens that γ1 is a loop.

PROPOSIT ION 16.5. The set of chains C(D) is an abelian group under the operation+.

Proof. The zero element of C(D) is the function m for which m(γ ) = 0 for all γ ∈ L.
The additive inverse of a function m is the function −m defined by

(−m)(γ ) = −(m(γ ))

It is easy to see that + is associative and commutative.

Technically, C is the ‘free abelian group’ generated by the set of paths P .

At first sight, it is not obvious how to visualise a formal sum of paths, espe-
cially one with integer coefficients. One way is to draw the images of the different
paths γj in the sum, and label each by the corresponding ‘multiplicity’ mj, as in
Figure 16.1.
The image of a cycle ± =

∑
mjγj is defined to be the union of the images of the γj

for those j with mj ±= 0.

We extend the definition of the integral and the winding number from loops to chains:

DEFIN IT ION 16.6. Let ± =
∑

mjγj be a chain, where the γj are paths and z0 ∈ C.

Then define

(i) ±

±

f =
³

j

mj

±

γj

f

(ii)

w(± , z0) =
³

j

mjw(γj, z0)

The definition trivially implies:

PROPOSIT ION 16.7. The integral is additive:
±

±1

f +

±

±2

f =

±

±1+±2

f

±

−±

f = −
±

±

f
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Using Theorem 7.8 is it easy to prove:

PROPOSIT ION 16.8. The winding number is additive:

w(0, z0) = 0

w(±1 + ±2, z0) = w(±1 , z0)+ w(±2, z0)

w(−±, z0) = −w(±, z0)

We can now generalise Section 7.5:

THEOREM 16.9. Let ± =
∑

mjγj be a chain, and let z0 be any point in C that does not
lie on the image of ±. Then

w(±, z0) =
1

2π i

±

±

dz

z− z0

Proof.

w(± , z0) =
³

j

mjw(γj, z0)

=
³

j

1

2πi
mj

±

γj

dz

z− z0

=
1

2π i

³

j

mj

±

γj

dz

z− z0

=
1

2π i

±

±

dz

z− z0

We sometimes need to make an explicit distinction between a path γ : [a,b]→ D ⊆

C and its image. To do so we write the image as

γ̂ = {γ (t) : t ∈ [a,b]}

We include the hat only when it might be confusing to omit it.

16.2 Cycles

Next we need a special type of chain, which we call a cycle. A cycle is a ‘closed chain’.
That is, the group of cycles is generated by chains whose images decompose into a series
of closed loops. That is, if the usual sum γ1 + · · · + γn is a loop, then the corresponding
formal sum in C is a cycle. Then all formal sums of cycles are again cycles. By definition
the cycles form a subgroup of C, which we denote byZ .

Next we define a subgroup B of Z, whose elements we call ‘boundaries’, which
consists of cycles that can be ignored when calculating integrals (and therefore winding
numbers). That is, cycles ² such that

±

²

f = 0 for all differentiable f : D→ C
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(As a convention, we use± ,γ when discussing chains and²,ω when discussing cycles.)
If we let

f (z) =
1

2π i

1

z− z0
(z0 ±∈ D)

then Theorem 16.9 implies that all boundary cycles automatically also satisfy

w(², z0) = 0 (z0 ±∈ D)

Which cycles should we use? By Theorem 9.4 the group B should include all bound-
aries ∂R of rectangles R, as in Section 9.3. Several special loops of this type are
particularly useful.

16.2.1 Sums and Formal Sums of Paths

We have already defined γ + δ and −γ for paths: respectively, adjoin the two paths and
combine them into a single one, and reverse the path. These operations are not those

of C. However, we want them to be the same ‘up to homology’, see Section 16.4. That
is, they should be equal modulo B. We can then think of these geometric operations as
being the corresponding operations in C (or the subgroup Z, which is more important

here) whenever homologous chains can be considered equivalent.
Recall from Section 6.8 that if γ : [a, b] → D and δ : [b, c] → D (not necessarily

closed paths) we defined −γ : [a, b] → D and γ + δ : [a, c] → D by

−γ (t) = γ (b+ a− t)

and

(γ + δ)(t) =

²
γ (t) if t ∈ [a,b]

δ(t) if t ∈ [b, c]

(The original definition was slightly more general, allowing the interval for δ to be [c, d]
and then shifting it to make c = b. That option is not needed here.) See Figure 16.2.
Although we are using the same symbols + and −, these operations are not (quite!)

those of the group C, and we need to sort out the precise relationship. To avoid confusion,
we temporarily write the operations in C as⊕ and², and use+ and− for the operations
on paths that we defined in Chapter 6.
First: they really are different. The path-sum γ + δ, considered as an element of C,

corresponds to the function m : P → Z such that

m(γ + δ) = 1

Figure 16.2 Previous definitions of −γ and γ + δ. Here both paths are loops, so they can also be
thought of as cycles.
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m(σ ) = 0 (σ ±= γ + δ)

In contrast, γ ⊕ δ ∈ C corresponds to the function m³ : P → Z such that

m
³
(γ ) = 1

m³(δ) = 1

m³(σ ) = 0 (σ ±= γ , δ)

These are different functions because, as elements of P , we have γ ⊕δ ±= γ , γ ⊕ δ ±= δ,

so

m³(γ ⊕ δ) = 0 m(γ + δ) = 1

Similarly,²γ (cycle) is not the same as −γ (path).

16.3 Boundaries

The role of homology is, in effect, to force these technically different forms of addition
and reversal to be the same. It exploits a standard trick encountered throughout mathe-

matics: define an equivalence relation for which objects that differ in inessential ways
are equivalent. Then their equivalence classes are the same. For instance, in arithmetic

modulo n, a difference between integers that is divisible by n is inessential. We would
like to set n = 0, but that is technically false. So we define r, s to be congruent modulo

n if r − s is divisible by n. Congruence is an equivalence relation, and the set of equiva-
lence classes is denoted Zn . Now, although r and s are different in Z, they represent the
same congruence class.
In this case Zn is the quotient group of the additive group of integers Z by the sub-

group of nZ of multiples of n; that is, Zn = Z/(nZ). (The multiplicative structure can
also be included, because nZ is an ideal of the ring Z.) We can play the same game with
cycles in place of Z, and whatever differences we wish to ignore playing the role of nZ.
In this case, the differences that we want to forget about are boundaries, in the following
sense:

DEFIN IT ION 16.10. The group B of boundaries in D is the subgroup of Z generated

by all boundaries ∂R of rectangles in D.

To make the argument clear, we continue to use ⊕,² in place of +,− in C to

distinguish the group operations from the standard operations on paths. To get round
one further technicality we go the whole hog and throw in all reparametrisations

of γ that preserve orientation. Consider an orientation-preserving homeomorphism

ρ : [a,b] → [a,b]. That is, ρ is continuous and has a continuous inverse ρ−1, and
ρ(a) = a,ρ(b) = b. Equivalently, ρ is monotonic strictly increasing on [a, b] and satis-
fies ρ (a) = a,ρ(b) = b. Now γρ(t) = γ (ρ(t)) defines a loop γρ. By Proposition 9.15,
this change has no effect on integrals, hence on winding numbers.

If we allow ρ to reverse orientation, the integral changes sign, which is why we
require orientation to be preserved. An alternative is to allow orientation to be reversed
as well. Then −γ is just a special reparametrisation, and any orientation-reversing
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Figure 16.3 Maps of rectangles used in the proof of Proposition 16.11. Top: Reversal. Middle:

Sum. Bottom: Reparametrisation.

reparametrisation is the map γ ´→ −γ composed with an orientation-preserving
reparametrisation.

PROPOSIT ION 16.11. Let γ , δ be paths in D and let γρ be an orientation-preserving
reparametrisation of γ . Then

γ ⊕ (−γ ) ∈ B (16.2)

(γ ⊕ δ) − (γ + δ) ∈ B (16.3)

γ ² γρ ∈ B (16.4)

Proof. In each case we specify a map φ : R→ D with a suitable boundary. Figure 16.3
illustrates the underlying geometry. Assume that γ : [a, b] → D and δ : [b, c] → D;

also that ρ : [a,b]→ [a,b] is the reparametrisation.

For (16.2), let (t, s) ∈ [a,b] × [0, 1] = R and set

φ(t, s) = γ (t)

(so φ is independent of s). Then φ(R) = γ ([a, b]) ⊆ D, and ∂φ = γ + (−γ ).

For (16.3), let (t, s) ∈ [a, c] × [0, 1] = R and set

φ(t, s) =

²
γ (t) if t ∈ [a, b]

δ(t) if t ∈ [b, c]

Now φ(R) = γ ([a,b])∪δ([c,d]) ⊆ D, and ∂φ can be decomposed into (γ⊕δ)² (γ+ δ).

For (16.4), let (t, s) ∈ [a,b] × [0, 1] = R and set

φ(t, s) = γ ((1− s)t + sρ(t))
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Then φ(R) = γ ([a, b]) ⊆ D, and ∂φ = γ − γρ.

PROPOSIT ION 16.12. If ² ∈ B then
±

²

f = 0 for all differentiable f : D→ C

and

w(², z0) = 0 (z0 ±∈ D)

Proof. It is enough to check that these conditions hold for boundaries of rectangles
in D, because both the integral and winding number are additive by Propositions 16.7
and 16.8.

16.4 Homology

The rather pedantic distinction between ⊕ and +, and the other items discussed above,
does not cause any great problems, because – as we now prove – it disappears when we
pass to homology classes. But first, we must define homology:

DEFIN IT ION 16.13. Two cycles²1 ,²2 in D are homologous, written ²1 ∼ ²2 , if

²1 ²²2 ∈ B

The homology class of ² is its ∼-equivalence class:

[²] = {²³ : ²³ ∼ ²}

It is easy to see that [²] is the coset of B inZ that contains ². We therefore define:

DEFIN IT ION 16.14. The first homology group of D is the quotient group

H1(D) = H = Z(D)/B(D)

It is abelian since Z(D) is abelian.

We denote the identity element of H by 0.

LEMMA 16.15. For all loops γ , δ and orientation-preserving reparametrisations ρ,

γ ⊕ δ ∼ γ + δ

²γ ∼ −γ
γρ ∼ γ

Proof. In each case the left- and right-hand sides differ by an element of B, by
Proposition 16.11. Therefore they define the same element of Z/B = H.

This lemma shows that the distinction between ⊕ and +, and the other similar

distinctions, disappear when we work modulo B. We therefore use the ordinary sym-
bols +,− for cycles as well as loops, and stop using ⊕,². They have served their
purpose.
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LEMMA 16.16. If γ ∼ γ ³ and δ ∼ δ³ then γ + δ ∼ γ ³ + δ³.

Proof. Both γ − γ ³ and δ − δ³ lie in B. Now add.

REMARK 16.17. Homology ‘really’ works with the image γ̂ of a path rather than the
path γ : [a,b] → D. More precisely, what matters is the image and its orientation.
Orientation is relevant because γ and −γ have the same image, but the integral along
one is minus that along the other. We want γ − γ ∈ B but not γ + γ ∈ B to make

integrals vanish on cycles in B.

Example 16.18. Let D = C \ {0}. Define γ : [0, 1] → D by

γ (t) = e2π it

and δ : [0, 1] → D by

δ(t) = 2e2π it

as in Figure 16.4 (left).
We claim that γ ∼ δ.

To prove this, introduce the path σ = [1, 2] and its reverse −σ = [2, 1], each
parametrised by t ∈ [0, 1].
Now γ − δ is homologous to γ + σ − δ − σ because modulo B we have

γ + σ − δ− σγ − δ + σ − σ = γ + δ + 0 = γ + δ

Then we claim that γ + σ − δ−σ = 0 modulo B. This follows because γ +σ − δ− σ

is the boundary of a rectangle. Specifically, let R = [0, 1] × [0, 1] and define a map

φ : [0, 1] × [0, 1]→ D

by

φ(r, s) = (1+ s)e2π ir

Then it is straightforward to check that ∂φ = γ + σ − δ − σ , see Figure 16.4 (right).
But now, modulo B, we have γ − δ = 0, so γ ∼ δ.

REMARK 16.18. It is possible to define the relation of homology using winding
numbers. (Obtaining the homology group is less straightforward.) In this approach a
boundary is defined to be any cycle ² such thatw(², z0) = 0 when z0 ±∈ D. The proof of
Cauchy’s Theorem still requires most of the same ideas, and we feel that this definition
of homology loses contact with the original geometric ideas that inspired it. Eventually
we will show that our definition is equivalent to the one based on winding numbers, but
we have to prove Theorem 16.2 to do this.

The following result is crucial:



362 Homology Version of Cauchy’s Theorem

Figure 16.4 Left: The paths γ , δ ,σ ,−σ . Right: Mapping a rectangle so that its boundary is
γ + σ − δ− σ .

THEOREM 16.19. Let f : D→ C be differentiable on a domain D. Let ²1 ,²2 be cycles
in D. If²1 ∼ ²2 then ±

²1

f =

±

²2

f

Proof. Since ²1 ∼ ²2 is equivalent to ²1 − ²2 ∈ B, and the integral is additive, the
statement is equivalent to

If ² ∈ B then

±

²

f = 0

Again using additivity, this follows if the integral over every generator of B is zero. But
B is generated by boundaries of rectangles whose images lie in D, and the integral over
the boundary of a rectangle is zero by Cauchy’s Theorem for a Boundary, Theorem 9.6.

The winding number is a homology invariant:

COROLLARY 16.20. If ²1 ∼ ²2 then

w(²1 , z0) = w(²2 , z0) for all z0 ±∈ D

16.5 Proof of Cauchy’s Theorem, Homology Version

We now give the proof of Theorem 16.2, the homology version of Cauchy’s Theorem.

Cauchy’s Theorem for a Boundary, Theorem 9.6, gives the implication (i)⇒ (ii). That
(ii) ⇒ (iii) follows from Theorem 16.9. So it remains only to prove that (iii) ⇒ (i).

Recall that condition (i) states that² is homologous to zero in D, or equivalently,² ∈ B.
Condition (iii) states:

w(², z0) = 0 for all z0 ±∈ D

which we call the non-winding condition.
Most of the proof that (iii)⇒ (i) is an exercise in making careful distinctions between

paths and their images, and using the relatively simple geometry of step paths to control



16.5 Proof of Cauchy’s Theorem, Homology Version 363

the topology. This does involve some rather pedantic distinctions, needed only for this
proof.

Let

² =
³

njωj (16.5)

for loops ωj inD, and nj ∈ Z. We may assume that theωj are distinct and that all nj ±= 0.

(If not, ² = 0 ∈ B anyway.)

We assume the non-winding condition and deduce that ² is homologous to zero.
The idea of the proof is to simplify ² by repeatedly changing it to some cycle ²³ that

is homologous to², and to use induction on some suitable measure of the complexity of
the cycle. The definition of ²³ is chosen so that the complexity decreases at each stage.
A simple result along these lines is Corollary 16.20, which implies that if ² ∼ ²³ and

z0 ±∈ D, then

w(², z0) = w(²³, z0)

Thus, if ² satisfies (iii) then so does ²³. Trivially, if ²³ satisfies (i) then so does ².
Therefore, if (iii) implies (i) for ²³, the implication also holds for². In other words:

When proving (iii) implies (i) for ² we can replace it by any homologous ²³.

16.5.1 Grid of Rectangles

To construct suitable ²³ we proceed as follows.
As in the proof of Lemma 8.6, we form a grid of rectangles. Extend each edge of ²̂

(horizontal or vertical) to a line in C. These lines divide C into finitely many rectangles,

and the lines cross at grid points, see Figure 16.5. Some of the ‘rectangles’ are infinite;
these play no role as we shortly see.
Let P be the set of all grid points that lie on ²̂, along with any corners or ‘ends’ where

an edge of ²̂ terminates without continuing. (The corresponding path ‘doubles back’ at
such a point. In the generality employed here, this can happen.)

Figure 16.5 Rectangles and grid points. Here² is a sum of three loops.
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We use P to split theωj into sums of paths, such that the image of each path is an edge
of some rectangle. Let the parameter values of ωj be t ∈ [a,b]. Sinceωj is a loop we can
change parameters if necessary so that ωj(a) ∈ P. (Start at a corner or some other grid
point, and note that a change of parameter is a homology.) Then the set of t for which
ωj(t) ∈ P (where the path goes through a point in P) is a finite set, and can be arranged
in order as

a = t0 < t1 < · · · < tn−1 < tn = b

Let ωk
j be the restriction of ωj to [tk−1 , tk + 1] for k = 1, . . . , n. Then

ωj = ω
1
j + · · · +ωn

j

We call each ωk
j a segment of ². Its image ω̂

k
j is an edge of some rectangle, and by

definition ω̂k
j ⊆ ²̂. Moreover, ωk

j has an orientation in the direction of increasing t.

Thus we can think of ωk
j as an oriented edge of a rectangle.

Now ² is (homologous to) a sum of segments, over all ωk
j , and ²̂ is the union of their

images.

Example 16.22. Consider Figure 16.6. Here ² is a single loop, but this overlaps itself
several times. Its path is indicated by the grey polygon, and the loop visits P in the order

ABEDGHIFCBEHGDEBA

Therefore

² = [A, B]+ [B, E]+ [E, D]+ · · · + [B, A]

Several segments occur more than once, sometimes in reverse orientation. For example
AB and BA occur, and BE occurs twice, along with its reverse EB. In such cases, the
image of ² overlaps itself.

We have now changed ² by a series of homologies into a sum of integer multiples of
segments. (To avoid proliferation of dashes, we continue to call the changed cycle ².)

Figure 16.6 A loop with several overlaps.
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Collect together all segments with the same image. Note that if σ is a segment then

σ + (−σ ) ∼ σ − σ ∼ 0

since it is a boundary; indeed a generator of type (ii). So we can cancel these two seg-
ments without changing the homology class of ². Since σ + (−σ ) is a loop, the rest of
² remains a cycle. That is:

Without loss of generality, ² contains no pair of opposite segments.

Therefore we can write

² =
³

j

mjσj

where the σj are distinct segments, σj and −σj do not both occur, and the mj are non-
zero integers. (There is one exception: all mj may be zero. But then ² ∈ B and we are
finished.)

For induction purposes we require:

DEFIN IT ION 16.23. The complexity of ² is

c(²) = number of segments + number of relevant rectangles

Here, as in the proof of Lemma 8.6, a rectangle Rr is relevant if w(², zr) = 0 for zr at
the centre of Rr . All infinite rectangles are irrelevant, and some finite ones may also be
irrelevant.

Observe that cancelling opposite segments decreases the complexity, so this ‘without
loss of generality’ step in the proof does not affect induction based on the complexity.

16.5.2 Proof of Theorem 16.2.

We prove that (iii) implies (i) by induction on the complexity c(²).

The induction starts with c(²) = 0. Then ² is the empty cycle. This corresponds to
the zero element 0 ∈ C, and since B is a subgroup of C, we have 0 ∈ B. So the empty

cycle is homologous to zero. This starts the induction.
For the induction step, take ²with c(²) > 0. Define A to be the top right point of P.

That is,

(i) im A ≥ im B for all B ∈ P

(ii) re A ≥ re B for all B ∈ P such that im B = im A

Since P is finite its top right point exists and is unique.
We consider the geometry of ² ‘near A’. There are three possibilities:

(i) A lies on a vertical edge of ²̂ but not on any horizontal edge.
(ii) A lies on a horizontal edge of ²̂ but not on any vertical edge.
(iii) A lies on a horizontal edge of ²̂ and on a vertical edge.
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Figure 16.7 Three possible cases for the geometry near A. Dotted lines indicate possible
connections to the rest of the cycle.

Figure 16.8 Rerouting segments to get rid of R.

Figure 16.7 shows these three possibilities, where A, B, D ∈ P.

In cases (i) and (ii), there must be a segment BA in that orientation, and another with
the reverse orientation AB, because ² is a cycle. These two segments cancel, contrary
to our previous assumption, so case (i) cannot occur. Similarly, case (ii) cannot occur.
So only (iii) is possible.
Orient AB from A to B and DA from D to A. Then all segments in ² with image AB

occur m times, where 0 ±= m ∈ Z . If m > 0 they have orientation AB; if m < 0 they
have orientation BA. Since ² is a cycle, the segments of ² with image DA must also
occur m times, where 0 ±= m ∈ Z. If m > 0 they have orientation DA, of m < 0 they
have orientation AD. (Any loop that arrives at A must leave A.)
Let C be the fourth corner of the rectangle R = ABCD. Then A, B, C, D are grid

points and A, B, D ∈ P. The geometry on R is shown in Figure 16.8 (left), with m

indicating |m| copies of a segment in the direction of the arrow for m > 0, and in the
opposite direction for m < 0.

16.5.3 Rerouting Segments

We now claim that by using a homology we can re-route the segments of ² that lie in
DAB to corresponding segments in DCB, as in Figure 16.8 (right). To set this up, we
pause from the proof of Theorem 16.2 to prove:

LEMMA 16.24. With the above notation, if z lies in the interior of R then

w(², z) = m (16.6)

Proof. Draw a vertical ray λ from z upwards, to infinity. This cuts AB at one (interior)
point X, as in Figure 16.9 .



16.5 Proof of Cauchy’s Theorem, Homology Version 367

Figure 16.9 Rectangle R and ray λ. Shaded area indicates half-plane containing ²2 .

Let ²1 be ²with all segments in DA and AB removed (this is not a cycle). Let²2 be

²1 plus the rerouted segments in DC and CB (all of multiplicity m). Then²2 is a cycle.
We claim that

²2 ∼ ²

Segments of ² lying in AB cut λ m times (with AB oriented to the left). The cycle
²2 does not intersect λ because A is the top right point of², so²2 lies in the half-plane
below AB.
By continuous choice of argument, as in Section 7.4,

w(²2, z) = 0 (16.7)

Let

δ = m ∂R ∈ Z

Clearly

² = ²2 + δ

because segments of the right-hand side on DC or CB cancel, and the other segments of
δ restore the segments on DA and AB.
We now face a minor technical problem: we do not (yet) know that DC and CB lie in

the domain D. We therefore need to prove this, as follows.
If z is in the interior of R, then

w(δ, z) = m

by continuous choice of argument. AB crosses λ only at X, where it crosses m times in
the anticlockwise direction.
Therefore if z is in the interior of R,

w(², z) = w(²2+ δ, z) = w(²2, z) + w(δ, z) = 0+m = m ±= 0

using (16.7) and additivity of w.
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16.5.4 Resumption of Proof of Theorem 16.2.

By (iii), which we are assuming, we have z ∈ D. Therefore the interior of R lies inD.
If BC ∈ ²̂ then BC ⊆ D. Otherwise, continuity of the winding number at points not

in ²̂ implies that w(², z) = 0 if z lies on the interior of BC. The same goes for CD.
Finally, suppose that z = C. If C lies in ²̂ then z ∈ D. If not, we again appeal to

continuity of w to deduce that w(², z) = m ±= 0. As above, z ∈ D. So the whole of R,
interior plus boundary, lies in D. But now

δ = m ∂R ∼ 0

since ∂R is a boundary, so lies in B. We finally conclude that

²2 ∼ ² − δ ∼ ²

The complexity c(²2) < c(²). The number of segments does not change, but we have
removed the rectangle R. This is relevant since w(², zR) = m ±= 0, where zR is the centre
of R. On the other hand, it is easy to see that no other rectangle can be irrelevant for ²2

but relevant for ². The reason is that if zk is the centre of rectangle Rk, the continuous
argument definition of w implies that

w(Rk, zl) =

²
1 if k = l

0 if k ±= l

Additivity then proves that for all rectangles Rk except R we have

w(²2 , zk) = (², zk)

Thus we have removed one relevant rectangle but not introduced any new ones, and
c(²2) < c(²) as claimed.

Inductively, ²2 ∼ 0. But ² ∼ ²2 so ² = 0. This completes the induction step,
proving Theorem 16.2.

16.6 Cauchy’s Residue Theorem, Homology Version

We can now use Theorem 16.2 to prove a homology version of Cauchy’s Residue
Theorem, Theorem 12.3.
First:

LEMMA 16.25. Let ²1 ,²2 be cycles in D such that

w(²1 , z) = w(²2, z) for all z ±∈ D

Then

²1 ∼ ²2

Proof. For all z ±∈ D,

w(²1− ²2, z) = w(²1, z)− w(²2 , z) = 0

By Theorem 16.2, ²1 − ²2 ∼ 0. So ²1 ∼ ²2 .
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Suppose z1, . . . , zk are distinct points in C, and define the k-times punctured plane to
be

D = C \ {z1 , . . . , zk}

It is easy to see that D is a domain. (Recall: this means open and connected.)

THEOREM 16.26. If D is the k-times punctured plane, then

H1(D) ∼= Z
k = Z⊕ · · · ⊕ Z (k times)

Proof. We do more: we find independent generators for H1(D); that is, elements such
that any element is a unique integer combination of them.

Let ² be a cycle in D. Then for j = 1, . . . , k, no zj lies on ²̂.

Since ²̂ is a closed set, its complement is open, so there exists ε > 0 such that for all
j = 1, . . . , k

Nε(zj) ∩ ²̂ = ∅

Let Rj be a square (with horizontal and vertical sides) of side ε/2 centred at zj. Then
Rj ⊆ Nε(zj) so Rj ∩ ²̂ = ∅. (We use a square to make ∂Rj a step path.)
Define cycles

ρj = ∂Rj

oriented anticlockwise. Then clearly

w(ρj, zl) =

²
1 if j = l

0 if j ±= l
(16.8)

using a suitable cut plane and a continuous choice of argument. Let

mj = w(², zj)

We claim that
² ∼

³
mjρj

This follows because
w(², zl) = ml = w

´³
mjρj, zl

µ

by additivity and (16.8). Now apply Lemma 16.25.
We also claim that the mj are unique: no other Z-linear combination of the ρj is

homologous to ². Equivalently, we must show that if

ρ =
³

mjρj ∼ 0 (16.9)

then all mj = 0.

Suppose (16.9) holds. Then w(ρ, z) = 0 for all z ±∈ D by Theorem 16.2. That is,
w(ρ , zl) = 0 for all l = 1, . . . , k. But by Proposition 16.8,

w(ρ, zl) = w

´³
mjρj, zl

µ
= ml

Thus ml = 0 for all l = 1, . . . , k.



370 Homology Version of Cauchy’s Theorem

Clearly every ρ is a cycle, so the map

² = (m1 , . . . ,mk)

induces an isomorphism

H1(D) → Z
k

We say that the homology class of ² is the corresponding (m1, . . . ,mk) ∈ Z
k.

THEOREM 16.27 (Cauchy’s Residue Theorem, Homology Version). Let D be a k-times
punctured plane and suppose that f : D → C is differentiable. Let ² by a cycle in D of
homology class (m1 , . . . ,mk ) ∈ Z

k. Then

±

²

f = 2π i

k³

j=1

mj res (f , zj)

Proof. ² ∼
∑k

j=1mjρj, so
±

²

f =

k³

j=1

±

ρj

f

Since f is differentiable, we can apply Theorem 12.3, Cauchy’s Residue Theorem for a
loop, to obtain

±

ρj

f = 2π i res (f , zj)

We could go on to state a more general version of Cauchy’s Residue Theorem for
other domains, such as C with a discrete infinite set of points removed, or a disc
with finitely many points or discs removed. We could also consider analogues for Rie-
mann surfaces. But it seems sensible to stop here, having opened up the possibilities of
homology and used it to prove two powerful theorems in complex analysis.

16.7 Exercises

1. Let D = {z ∈ C : 1 < |z| < 2}. Prove that H1(D) ∼= Z.

2. Let D be an open disc with k distinct points removed. What is H1(D)? Prove your
answer correct.

3. Let D be Cwith k disjoint closed discs removed. What is H1(D)? Prove your answer
correct.

4. Suppose that K = {zk : k ∈ N} is an infinite set of distinct points, and that K is

discrete; that is, for each k there exists ε > 0 such that Nε(zk) ∩ K = {zk}. Prove a
version of Cauchy’s Residue Theorem for the domain D = C \K.

5. Construct a closed step path in C \ {0} that is homologous to zero, whose
complement has four distinct connected components.
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6. The 0th homology group H0(D) can be defined in a manner analogous to that for
H1(D), as follows. A 0-cycle is a finite formal sum of pairs of (not necessarily
distinct) points in D. A 0-boundary is a finite formal sum of pairs of points inD that

can be joined by a step path in D.
Show that 0-cycles form a group Z0 and 0-boundaries from a group B0 . Define

H0(D) = Z0/B0.

Show that the pair (z1 , z2) is a 0-boundary if and only z1 and z2 lie in the same

connected component of D. Deduce that H0(D) is generated by all cosets of B of

the form (zK , zK) + B, where one point zK ∈ C is chosen for each connected com-

ponent K. (That is, H0(D) is isomorphic to the free abelian group on the connected
components.) In particular, if D has a finite number k of connected components,

prove thatH0(D) ∼= Z
k.

7. Prove the Dog Walking Theorem: If σ1, σ2 are loops, both parametrised by t ∈ [a,b],

and there is a point z0 such that

|σ1(t) − σ2(t)| < |σ1(t) − z0| for all t ∈ [a,b]

then

w(σ1, z0) = w(σ2, z0)

and σ1 ∼ σ2 in C \ {z0}.
Explain the name of this theorem. (Hint: σ1 is the man, σ2 the dog, and z0 is a

tree.)

Use it to give another proof of Rouché’s Theorem 12.14.
8. Jordan Contour Theorem for Loops. Recall that a loop is a closed step path. Say

that a loop σ : [a, b] → C is simple if it does not cross itself; that is, σ (t1) = σ (t2)

with t1 ±= t2 ∈ [a,b] only when the tj equal a or b.

Use the trick in the proof of Theorem 16.2, of rerouting the segments of a cycle
(here one loop) round the rectangle R adjacent to the top right point of σ̂ to prove
that:

(i) C \ σ̂ has exactly two connected components: one bounded, the other
unbounded.

(ii) Let I(σ ) be the bounded component in (i) and O(σ ) be the unbounded
component. Prove that w(σ , z) = µ1 if z ∈ I(σ ) and w(σ , z) = 0 if z ∈ O(σ ).

(iii) ∂I(σ ) = ∂O(σ ) = σ̂ .
9. If σ1, σ2 are simple loops and σ̂1 ⊆ I(σ2), prove that I(σ1) ⊆ I(σ2) and O(σ1) ⊇

O(σ2).

10. Suppose that a simple loop σ lies in a domain D. Prove that there exists ε > 0 such
that |z − σ (t)| < ε for z ∈ C and some t ∈ [a, b] implies that z ∈ D. (Hint: use the
Paving Lemma.)

11. Using the result of Exercises 9 and 10, prove that if σ is a simple loop in D there

exists ε > 0 such that there are simple loops σ I ,σO such that:
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(i) Every point of σ̂O ∪ σ̂ I lies within distance ε of some point of σ̂ .
(ii) σO lies in O(σ ) and σ I lies in I(σ ).
(iii) The regions I(σO) \ (σ̂ ∪ I(σ )) and I(σ ) \ (σ̂ I ∪ I(σ I)) are connected.

12. If D is a domain (hence connected) and σ is a simple loop in D, prove that both
D∩ O(σ ) andD ∩ I(σ ) are connected.

13. Define the edges of a loop as follows. Define a corner to be a point at which the
image of the loop switches between horizontal and vertical. Assume that σ (a) is
a corner, and let Q be the set of t ∈ [a, b] such that σ (t) is a corner. Arrange the
elements of Q in order:

a = t0 < t1 < · · · < tn = b

Then an edge is the image of σ restricted to some interval [tj−1, tj] for j = 1, . . . ,n.
Define the edges of a cycle to be those of its component loops.
Say that a cycle σ is in general position if no two edges are collinear (that is,

both lie in the same horizontal or vertical line in C).
Prove that every cycle in a domainD is homologous to a cycle in general position.
(Hint: inductively displace successive edges parallel to themselves through a

small distance, so that the displaced edge differs from the original edge by the
boundary of a rectangle lying inside D. Fix up the geometry at corners, where as
stated there may be a gap or a small overlap between the displaced edges.)

14. Show that any non-zero cycle is homologous to a sum of disjoint simple loops σj,
each occurring in the sum with multiplicity µ1. (Hint: use Exercise 13 to put it in

Figure 16.10 Left: Partial ordering of loops (here shown as ellipses, not step paths, for clarity) by
containment of interiors. Right: Cancelling adjacent oppositely oriented loops by making a cut.
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general position, then reroute edges near crossing points to eliminate the crossings,
using small rectangles inside D.)

15. Using induction on the number of simple loops in such a decomposition, obtain
a different proof of Theorem 16.2, which is modelled along the classical lines of
simplifying loops by ‘making cuts’ that cancel each other out. See for instance
Figure 11.2.
Warning: This exercise is hard, but the following sketch may help. Think of it as

a mini-research project.
First, show that disjoint simple loops are partially ordered by the relation σ1 <

σ2 ⇐⇒ I(σ1) ± I(σ2). This ordering can be complicated, see Figure 16.10.
Show that if (iii) holds then there must be two simple loops σ1 < σ2 with opposite

orientations, such that there is no simple loop σ3 with σ1 < σ3 < σ2 . Using some

of the exercises above, show that there is a step path τ joining a point on σ1 to a
point on σ2 that lies in D and intersects no other σj appearing in the decomposition.

Use τ to write
σ1 + σ2 = ρ + τ

³

where ρ is a simple loop in D and τ ³ is a simple loop in D that is homologous to
zero, see Figure 16.9. This reduces the number of simple loops by 1, and induction
reduces to the case of one simple loop σ . Show that I(σ ) lies in D and complete the
proof using property (iii).
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The end of this book is fast upon us, but there is as yet no discernible end to com-
plex analysis itself. It remains a vigorous and growing part of mainstream mathematics.
We sample this rich area by giving brief descriptions of five areas of current research:
the Riemann Hypothesis, modular functions, several complex variables, complex
manifolds, and complex dynamics.

17.1 The Riemann Hypothesis

One of the more unexpected applications of complex analysis occurred in the second
half of the nineteenth century, leading to major advances in number theory. At first sight
these two areas have little connection: complex analysis is about continuous quantities
and number theory is discrete. Even more surprisingly, the connection that emerged did
so in the context of statistical properties of prime numbers. The starting point was a new
kind of complex function, based not on power series, but on Dirichlet series of the form

φ(s) =

∞±

n=1

an

ns

where the an and s are complex numbers and the domain is restricted to make the series
converge. For example, if the an are bounded, we require re s > 1. More strongly, if the
partial sums a1 + · · · + an are bounded, we require only re s > 0. Classical concepts
such as the gamma function (and, later, more sophisticated new ideas) were then used
to extend the definition of φ to the entire complex plane, except for isolated poles.
Prime numbers are of vital importance in mathematics, yet they notoriously lack any

clear pattern. Given a list of all primes up to some particular number, there seems to
be no simple way to predict the next one. However, hints of regularity emerge when we
think about entire ranges of primes. For instance: how many primes are there up to some
specified limit x? It is difficult to answer this question exactly, but good approximations
are another matter. In 1797–8 Adrien-Marie Legendre counted how many primes occur
up to various limits, using tables of primes provided by Jurij Vega and Anton Felkel.
Denoting the number of primes less than x by π (x), as we now do, he observed empiri-
cally that π (x) seems to be close to x/(log x−1.083 66). In a letter of 1849, Gauss wrote
that when he was about 15 he noticed that π (x) is approximately x/ log x for large x.
In 1838 Dirichlet wrote to Gauss to tell him he had found a similar but more accurate
approximation to π (x), the logarithmic integral
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Li(x) =

² x

0

dt

log t

For example, when x = 109 ,

π (x) = 50 847 534
Li(x) = 50 849 234.9

x/ log x = 48 254 942.4

The approximations here are asymptotic: that is, the ratio of the approximate formula to
the true value π (x) was conjectured to tend to 1 as x → ∞. The error in an asymptotic

formula can be quite big; it just has to be significantly smaller than the exact quantity.
All of these observations were purely empirical, and a rigorous proof that these for-

mulas are asymptotic to π(x) became a major open problem in number theory, called
the Prime Number Theorem (at a time when ‘theorem’ was also used to refer to a con-
jecture). The eventual proof of the Prime Number Theorem relied on deep applications
of complex analysis.
The relation between these apparently disconnected areas of mathematics goes back

to Euler, who realised in 1737 that uniqueness of prime factorisation has an implication

for real analysis, namely the formula

∞±

n=1

1

ns
=

³

p

1

1− p−s

where p runs through the primes. To prove this, observe that summing a geometric series
gives

1

1− p−s
=

1

1s
+

1

ps
+

1

p2s
+ · · ·

Expand the product on the right-hand side, and observe that each term 1/ns appears

exactly once as 1 divided by the sth power of a product of prime powers.
Euler considered only positive integer s, but in 1848 and 1850 the Russian mathemati-

cian Pafnuty Chebyshev attempted to prove the Prime Number Theorem by applying
real analysis to Euler’s series, assuming s to be real and greater than 1, so that the series
converges. He managed to prove that for large enough x the ratio of π (x) to x/ log x lies
between two constants: one slightly bigger than 1, the other slightly smaller.

Riemann realised that real analysis was too limited to complete the proof, but complex

analysis was more powerful and might do the trick. He noticed that Euler’s series con-
verges for any complex swith re s > 1. Its sum, called the zeta function ζ (s), is complex

analytic. He wrote up his ideas in 1859. They included an explicit formula expressing
π (x) exactly in terms of the zeta function. To state it, Riemann defined a related function

±(x) = π (x)+
1

2
π (x1/2)+

1

3
π(x1/3)+

1

4
π (x1/4) + · · ·

which counts the prime powers up to x. From this it is easy to deduce π (x). Then he
proved that
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±(x) = Li(x)−
±

ρ

Li(x
ρ
)+

² ∞

x

dt

t(t2 − 1) log t

where the sum is over all zeros of the zeta function, excluding negative even integers.
(We explain where those come from in a moment – their role is not apparent in the
formula for the infinite series.) The zeros and poles of a complex analytic function
are important because they characterise the function completely if we also know their
orders. It turns out that the zeros of the zeta function include all negative even integers,
along with infinitely many others.
In 1896 Jacques Hadamard and Charles Jean de la Vallée-Poussin independently

proved the Prime Number Theorem using Riemann’s zeta function, a triumph for what
became known as analytic number theory – the application of complex analysis to prop-
erties of whole numbers. This approach has now blossomed into a huge area of number

theory.

Riemann took the crucial step of using analytic continuation to extend the definition
of ζ(s) so that s can be any complex number except 1. This step depends on the gamma

function, introduced in Section 6.11, which is a generalisation of the factorial function
n! of a whole number n ∈ N.

To extend the domain of definition of the zeta function, we first note that the series
for ζ(s) converges only when re z > 1. However, it is easy to verify that

´
1−

2

2s

µ
ζ(s) =

1

1s
−

1

2s
+

1

3s
− · · ·

The series on the right converges for re z > 0, so the formula lets us extend the definition
of the zeta function to such z, and it remains an analytic function of z. Then, starting
from a formula of Adolf Hurwitz, Riemann deduced the functional equation for the zeta
function: if 0 < re s < 1, then

ζ(s) = 2sπs−1 sin
¶sπ
2

·
²(1− s)ζ (1− s)

where ² denotes the gamma function, Section 6.11. This formula can then be used to
define ζ (s) for all complex z ±= 1, by assuming it holds whenever 0 ≤ re s, giving an
analytic continuation of the zeta function to C \ {1}. The same formula shows that

ζ(−2n) = 0 n= 1, 2, 3, . . .

because the factor sin
(
sπ
2

)
vanishes at these numbers. The negative even integers are

the trivial zeros of the zeta function.
In his paper, Riemann [16] observed that there also exist non-trivial zeros of the zeta

function – those that are not negative even integers. In particular he found zeros at

1
2 ² 14.135i

1
2 ² 21.022i

1
2 ² 25.011i

but did not publish these results. His calculations suggested that all non-trivial zeros
seem to have real part 1

2
. This statement is now known as the Riemann Hypothesis. (His

actual statement was about a closely related function and is equivalent to this.) He wrote:
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One would, however, wish for a strict proof of this; I have, though, after some fleeting futile
attempts, provisionally put aside the search for such, as it appears unnecessary for the next
objective of my investigation.

As time passed, it became clear that the Riemann Hypothesis is of central impor-
tance in mathematics. It implies strong bounds on the error in the Prime Number
Theorem – the order of magnitude of the difference between the approximate formula
and π (x). For example, in 1901 Niels Helge von Koch showed that if the Riemann
Hypothesis is correct then the error |Li(x)− π (x)| grows no faster than a constant times√
x log x, and in 1976 Lowell Schoenfeld gave the explicit bound

|Li(x) − π (x)| <
1

8π

√
x log x (x ≥ 2657)

The Riemann Hypothesis also tells us about the size of gaps between consecutive
primes. Better still, there are far-reaching generalisations with major implications
throughout number theory, and it has applications to testing numbers to see whether
they are prime, which is important for encrypted Internet communications. There is
a lot of circumstantial evidence in favour of the Riemann Hypothesis, and computer
calculations have verified it for the first ten trillion zeros.
Despite a huge amount of effort, however, the Riemann Hypothesis has neither been

proved nor disproved. Hilbert included it in his famous list of unsolved problems in
1900. The Clay Mathematics Institute is currently offering a prize of one million dollars
for solutions to six major unsolved problems in mathematics, and the Riemann Hypoth-
esis is one of them. A seventh, the Poincaré Conjecture, was solved in 2002–3 by Grigori
Perelman, who declined the prize.

17.2 Modular Functions

Extending the idea of periodic functions (such as exp) leads to doubly periodic func-
tions, which satisfy f (z) = f (z + p) = f (z + q) for two complex numbers p, q that are
linearly independent over the reals (not real multiples of each other). These are also
known as elliptic functions because some of them can be used to give a formula for the
arc-length of an ellipse.
Further generalisation leads to modular functions, which transform in a nice way

under a discrete group of Möbius maps. Here ‘discrete’ means that each transforma-
tion is separate from the others rather than being part of some continuous family. For
example, Z2 is a discrete subgroup ofR2 .
These functions preoccupied many mathematicians at the end of the nineteenth cen-

tury. These united in one package group theory, differential equations, algebraic function
theory, topology, and complex analysis. This is still an important field of research. For
example, modular functions are heavily involved in Andrew Wiles’s celebrated proof of
Fermat’s Last Theorem.
The starting point is the modular group, which consists of all Möbius maps

µ(z) =
az+ b

cz+ d
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for which a,b, c,d ∈ Z and ad − bc ±= 0. This group is also called the special linear
group over Z, denoted SL2(Z). If H denotes the upper half-plane {z ∈ C : im z ≥ 0},

then (subject to some technical conditions omitted here) amodular function is a function
f : H→ C that is analytic on H and satisfies the condition

f (µ(z)) = (cz+ d)kf (z) ∀z ∈H

for any µ ∈ SL2(Z), where the weight k is an odd positive integer.
Generalisations of these functions, known as modular forms, have many applications

to number theory. Wiles deduced Fermat’s Last Theorem from his proof of a long-
conjectured relationship between modular forms and certain number-theoretic equations
called elliptic curves because of the connection with elliptic functions. An ellipse is not
an elliptic curve.

17.3 Several Complex Variables

Functions of several complex variables may be studied. They turn out to be far trickier
than we might expect, with startling new phenomena.
A function of several complex variables is a map

f : D→ C

where the domain D is an open subset of Cn for some n ∈ N, n ≥ 2. We require f to
be analytic, in the sense that for each a = (a1 , . . . , an) ∈ U there is a convergent power
series expansion

f (z1, . . . , zn) =
±

bk1,...,kn (z1− a1)
k1 · · · (zn − an)

kn

There is an equivalent condition analogous to the Cauchy–Riemann Equations, which
can be proved using a form of Cauchy’s Integral Formula. A more common term in this
context is that such an f is holomorphic on U.
Some of the basic theorems and concepts of complex analysis generalise to several

variables, but many others do not. Analytic continuation has a natural definition, and
is again unique but possibly multivalued. One of the most influential new discoveries
is the Hartogs’ phenomenon, named after Friedrich Hartogs. In one-variable complex
analysis, there are analytic functions with a natural boundary – a closed curve beyond
which they cannot be analytically continued. Equation (14.5) gives an example. Hartogs’
extension theorem of 1906 states, roughly speaking, that no such thing occurs for two or
more variables. The domain on which a function is holomorphic is always unbounded.
Hartogs proved more. In one-variable complex analysis, for any domain D there exists

an analytic function f : D → C for which the boundary ∂D is a natural boundary.
Hartogs proved that if

³2 = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1}
Hε = {(z1, z2) ∈ ³2 : |z1| < ε or 1 − ε < |z2|}

for 0 < ε < 1, then any function f holomorphic on Hε has a holomorphic extension F
to ³2 . Indeed, F can be defined using Cauchy’s Integral Formula.
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The theory was developed by Hartogs and Kiyoshi Oka in the 1930s. Hartogs proved
that every isolated singularity is removable when n ≥ 2, another crucial difference from
the one-variable case. The subject really began to take off in 1945 with work of Henri
Cartan, Hans Grauert, and Reinhold Remmert. It soon evolved into the more general
context of complex manifolds, which we consider next.

17.4 Complex Manifolds

The Riemann surface alone has opened up broad vistas, by capturing the essential struc-
ture of a complex function in a single geometric object. All kinds of information, such as
the presence of branch points and singularities, can be read off from it – and the ‘rigid-
ity’ of analytic functions means that they are essentially determined by the position
and nature of their singularities. Many questions that seem baffling without Riemann
surfaces become transparent when this extra geometry is invoked.
The notion of a complex manifold arises when we generalise Riemann surfaces to

several complex variables. The basic definition is modelled on real manifolds: these are
multidimensional analogues of surfaces, obtained by patching together open subsets of
Rn whose coordinates are smoothly related when the patches overlap. In the complex
case we use open subsets of Cn whose coordinates are analytically related when the
patches overlap.
In differentiable topology a smooth real manifold may have several distinct differen-

tiable structures, but in all dimensions except 4 the number of such structures is finite.
However, a fixed manifold of even dimension can possess infinitely many different com-
plex structures. These can be classified by associating each complex structure with a
point in a so-called moduli space which is itself a complex algebraic variety – roughly,
the set of zeros of a system of polynomials in several complex variables.
The whole area is deeply related to topology and to algebraic geometry, and we will

not attempt to summarise it. Because all of these areas are highly abstract, until recently
much of this work was viewed by most non-mathematicians (among those aware of
its existence) as mere generalisation for its own sake – pretty, intellectually clever, but
far too wild and abstract to have sensible applications outside pure mathematics. Such
judgements are usually superficial and premature when they refer to the mathematical
mainstream: most ideas that are important in pure mathematics eventually acquire sig-
nificant uses. And so it has proved here. Complex manifolds and automorphic functions
are now central to the physics of Quantum Field Theory and the study of gauge fields in
particle physics, for instance.

17.5 Complex Dynamics

Let f : Z → Z be a map from a set Z to itself. Then we can apply f repeatedly to any
z0 ∈ X to get the sequence

z0, f (z0), f (f (z0)), f (f (f (z0))), . . .

This process is classically known as iterating f . It can be defined inductively by
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f 0(z0) = z0 f n+1(z0) = zn+1 = f (zn)

The modern term is discrete dynamical system. If we think of the subscript n as ‘time’,
ticking in whole number steps, the sequence (zn) specifies how an initial state x0 changes
over time. Usually the set Z is a smooth manifold – a multidimensional analogue of a
smooth surface. A central aim of dynamical systems theory is to understand sequences
of this kind, especially their long-term behaviour.
Complex dynamics studies discrete dynamical systems when Z = C (or some sub-

set of C) and f is differentiable. The first serious work on this topic was carried out
by Pierre Fatou in 1917 and Gaston Julia in 1918. Their methods were analytic. With
the advance of computer graphics it became possible to draw accurate pictures, which
revealed surprisingly intricate shapes of great beauty. The associated mathematics is also
very beautiful, from a logical point of view. However, many interesting and important
problems remain open at this stage.
For this brief discussion, we restrict attention to polynomial f . Analogous concepts

can be studied for general differentiable f , but some definitions are more complicated.
See Devaney [3] for the details. A key concept is the Julia set of f . This can be char-
acterised in several equivalent ways, by proving appropriate theorems. Perhaps the
simplest is to distinguish two types of behaviour for the sequence (zn). Depending on z0 ,
either the set of all zn remains bounded for all n ∈ N, or it diverges to infinity. The Julia
set J(f ) is the boundary of the set of z0 for which it diverges to infinity. For polynomial
f this is also the boundary of the set of z0 for which it remains bounded. The Julia set is
invariant under f , that is, f −1(J(f )) = f (J(f )) = J(f ).

For example, if f (z) = z2 then J(f ) is the unit circle. On J(f ), the map f sends eiθ to
e2iθ , doubling the angle. If f (z) = z2 − 2 it can be proved that J(f ) is the line segment
[−2, 2], and the dynamics of f on this interval is more complicated.
The geometry of Julia sets is fascinating, even for very simple maps f . It is best

understood (and even then not completely) for quadratic maps

f (z) = fc(z) = z2 + c c ∈ C

Sometimes J(fc) is quite simple. For instance, if c < 1
4 then J(fc) is a simple closed

curve. For other values of c it is a highly intricate fractal, as in Figure 17.1. For some c
the Julia set is a disconnected dust cloud; for others it is connected.

Figure 17.1 Two examples of Julia sets.
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Figure 17.2 Left: The Mandelbrot set. [From Wikimedia Commons under the GNU Free
Documentation License.] Right: Close-up of the boundary of part of the Mandelbrot set.

To bring order to the Julia sets, we consider how their topology depends on the con-
stant c ∈ C. The Mandelbrot set M ⊆ C is defined to be the set of c for which J(fc) is
connected. Figure 17.2 (left) shows the Mandelbrot set: it is the black cactus-like region.
The boundary of the Mandelbrot set is infinitely complicated – a small part is shown in
Figure 17.2 (right). Numerous images can be found on the Internet, including movies
that zoom into the set at ever greater magnification.
Near any point c the Mandelbrot set looks like the Julia set J(fc). It has been proved

that the Mandelbrot set is connected. It is conjectured to be locally connected (look up
the definition!) but this conjecture remains open as we write. Analogues for other types
of differentiable complex function have been studied, and many problems remain open.

17.6 Epilogue

In a sense, the wheel has come full circle. The contour of history has wound round
the singularity of mathematical discovery, and closed. More precisely, it has returned to
its starting point but climbed one level up the Riemann surface of scientific advances.
In its early days, complex analysis was (almost) a branch of physics; the connections
with potential theory and fluid mechanics were widely exploited. Towards the end of the
nineteenth century Felix Klein offered a ‘proof’ of a theorem along the following lines:
think of the Riemann surface as being made of thin metal, and an electric current flowing
through it . . . . Today this would not be considered a logically convincing argument, but
the physical intuition behind it led to some important mathematical discoveries. Now we
are witnessing the converse process, with mathematical intuition leading to important
ideas in physics. There is a two-way trade between mathematics and its applications.
And whatever the attractions of beauty for its own sake, this trade is vital for the health
of both mathematics and science.
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